A Local Brightness Normalization (LBN) algorithm for destriping Hyperion images

A hybrid algorithm based on global moments matching and local brightness normalization is proposed for correcting vertical stripes in Hyperion images. Two types of vertical stripes are identified: (1) global stripes comprising entire columns of dark pixels with brightness values lower than the global brightness, and (2) local stripes comprising intermittent segments of pixels within a specific column that have lower brightness values compared with the local neighbourhood brightness. The proposed algorithm operates in four steps. First, a minimum noise fraction-transformation-based filtering is used to minimize spatially decorrelated noise. Then no-data pixels values are corrected. Next, global stripes are demarcated and corrected. Finally, local stripes are flagged and corrected. Applications of the proposed algorithm to two Hyperion datasets show significant reduction in vertical stripes.

[1]  Limin Yang,et al.  Oblique striping removal in remote sensing imagery based on wavelet transform , 2006 .

[2]  Hao Chen,et al.  Processing Hyperion and ALI for forest classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[3]  Jian Guo Liu,et al.  FFT Selective and Adaptive Filtering for Removal of Systematic Noise in ETM+ Imageodesy Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[4]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[5]  James M. White,et al.  Landsat Data Destriping Using Power Spectral Filtering , 1988 .

[6]  Liangpei Zhang,et al.  A MAP-Based Algorithm for Destriping and Inpainting of Remotely Sensed Images , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[7]  F. Kruse Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California , 1988 .

[8]  Angela Lausch,et al.  Reduction of Radiometric Miscalibration—Applications to Pushbroom Sensors , 2011, Sensors.

[9]  Fred A. Kruse,et al.  Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..

[10]  Tian Han,et al.  Detection and correction of abnormal pixels in Hyperion images , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[11]  B. Münch,et al.  Stripe and ring artifact removal with combined wavelet--Fourier filtering. , 2009, Optics express.

[12]  M. Wegener Destriping multiple sensor imagery by improved histogram matching , 1990 .

[13]  Kun Shang,et al.  An improved approach based on Moment Matching to Destriping for Hyperion data , 2011 .

[14]  Pierre Karrasch,et al.  Destriping of hyperspectral image data: an evaluation of different algorithms using EO-1 Hyperion data , 2014 .

[15]  Amr Abd-Elrahman,et al.  De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering , 2011 .

[16]  Tim R. McVicar,et al.  Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes , 2003, IEEE Trans. Geosci. Remote. Sens..

[17]  Huan Li,et al.  Research of image preprocessing methods for EO-1 Hyperion hyperspectral data in tidal flat area , 2008, Geoinformatics.

[18]  Fred A. Kruse,et al.  Comparison of EO-1 Hyperion and airborne hyperspectral remote sensing data for geologic applications , 2002, Proceedings, IEEE Aerospace Conference.

[19]  S. Adler-Golden,et al.  Spectral image destriping using a low-dimensional model , 2013, Defense, Security, and Sensing.

[20]  Robert J. Woodham,et al.  Destriping LANDSAT MSS images by histogram modification , 1979 .

[21]  Nicolas H. Younan,et al.  Quality analysis of pansharpened images , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[22]  J. D. Dykstra,et al.  Analysis of AIS Data of the Recluse Oil Field, Recluse, Wyoming , 1985 .

[23]  Qian Du,et al.  Interference and noise-adjusted principal components analysis , 1999, IEEE Trans. Geosci. Remote. Sens..

[24]  Guoqing Li,et al.  Research on method of remote sensing data quality contrast among different quantization levels , 2013 .

[25]  I. Parcharidis,et al.  Landsat TM and ERS data fusion: a statistical approach evaluation for four different methods , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).