Large Families of Asymptotically Optimal Two-Dimensional Optical Orthogonal Codes

Nine new two-dimensional Optical Orthogonal Codes (2-D OOCs) are presented here, all sharing the common feature of a code size that is much larger in relation to the number of time slots than those of constructions appearing previously in the literature. Each of these constructions is either optimal or asymptotically optimal with respect to either the original Johnson bound or else a nonbinary version of the Johnson bound introduced in this paper. The first five codes are constructed using polynomials over finite fields-the first construction is optimal while the remaining four are asymptotically optimal. The next two codes are constructed using rational functions in place of polynomials and these are asymptotically optimal. The last two codes, also asymptotically optimal, are constructed by composing two of the above codes with a constant weight binary code. Also presented is a three-dimensional Optical Orthogonal Code (3-D OOC) that exploits the polarization dimension. Finally, phase-encoded optical CDMA is considered and construction of two efficient codes are provided.

[1]  Guu-chang Yang,et al.  A new family of wavelength-time optical CDMA codes utilizing programmable arrayed waveguide gratings , 2005, IEEE Journal on Selected Areas in Communications.

[2]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .

[3]  Zhen Zhang,et al.  New constructions of optimal cyclically permutable constant weight codes , 1995, IEEE Trans. Inf. Theory.

[4]  J. Bajcsy,et al.  Design and performance of 2-D codes for wavelength-time optical CDMA , 2002, IEEE Photonics Technology Letters.

[5]  Yanxun Chang,et al.  Further results on optimal optical orthogonal codes with weight 4 , 2004, Discret. Math..

[6]  J P Heritage,et al.  Encoding and decoding of femtosecond pulses. , 1988, Optics letters.

[7]  G. Ge,et al.  Constructions for optimal (v, 4, 1) optical orthogonal codes , 2001, IEEE Trans. Inf. Theory.

[8]  G. Einarsson Address assignment for a time-frequency-coded, spread-spectrum system , 1980, The Bell System Technical Journal.

[9]  H. Haus Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Ananth Selvarajan,et al.  Design of a new family of two-dimensional codes for fiber-optic CDMA networks , 1998 .

[11]  Oscar Moreno,et al.  A new family of frequency-hop codes , 2000, IEEE Trans. Commun..

[12]  Marco Buratti,et al.  Cyclic Designs with Block Size 4 and Related Optimal Optical Orthogonal Codes , 2002, Des. Codes Cryptogr..

[13]  Charles J. Colbourn,et al.  Recursive constructions for optimal (n,4,2)-OOCs , 2004 .

[14]  Jean-Pierre Cances,et al.  2-Dimensional Optical CDMA System Performance with Parallel Interference Cancellation , 2006, ISCC.

[15]  Stephen Farrell,et al.  Optical phase characterization of active semiconductor microdisk resonators in transmission , 2006 .

[16]  Guu-chang Yang,et al.  Extended carrier-hopping prime codes for wavelength-time optical code-division multiple access , 2004, IEEE Transactions on Communications.

[17]  Kenneth G. Paterson,et al.  On the existence and construction of good codes with low peak-to-average power ratios , 2000, IEEE Trans. Inf. Theory.

[18]  Andrew M. Weiner,et al.  Coherent ultrashort light pulse code-division multiple access communication systems , 1990 .

[19]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[20]  Guu-chang Yang,et al.  Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA , 2005, IEEE Transactions on Communications.

[21]  Cheng-Yuan Chang,et al.  Multiple-wavelength optical orthogonal codes under prime-sequence permutations , 2004, ISIT.

[22]  Kenneth G. Paterson,et al.  Sequences for OFDM and Multi-Code CDMA: Two Problems in Algebraic Coding Theory , 2001, SETA.

[23]  Anshi Xu,et al.  A new family of 2-D optical orthogonal codes and analysis of its performance in optical CDMA access networks , 2006, Journal of Lightwave Technology.

[24]  Ryoh Fuji-Hara,et al.  Optical orthogonal codes: Their bounds and new optimal constructions , 2000, IEEE Trans. Inf. Theory.

[25]  I. Andonovic,et al.  Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security , 1996 .

[26]  Guu-chang Yang,et al.  Two-dimensional spatial signature patterns , 1996, IEEE Trans. Commun..

[27]  A.E. Willner,et al.  3D time-wavelength-polarization OCDMA coding for increasing the number of users in OCDMA LANs , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[28]  Leslie A. Rusch,et al.  Passive optical fast frequency-hop CDMA communications system , 1999 .

[29]  Hirobumi Mizuno,et al.  Optical orthogonal codes obtained from conics on finite projective planes , 2004, Finite Fields Their Appl..

[30]  Simon Litsyn Peak power control in multicarrier communications , 2007 .

[31]  Robert M. Gagliardi,et al.  Design and performance analysis of wavelength/time (W/T) matrix codes for optical CDMA , 2003 .

[32]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[33]  Namkyoo Park,et al.  Design of new family of two-dimensional wavelength-time spreading codes for optical code division multiple access networks , 1999 .

[34]  Yanxun Chang,et al.  Combinatorial constructions of optimal optical orthogonal codes with weight 4 , 2003, IEEE Trans. Inf. Theory.

[35]  Ryoh Fuji-Hara,et al.  Optimal (9v, 4, 1) Optical Orthogonal Codes , 2001, SIAM J. Discret. Math..

[36]  J.E. McGeehan,et al.  Experimental demonstration of OCDMA transmission using a three-dimensional (time-wavelength-polarization) codeset , 2005, Journal of Lightwave Technology.

[37]  J.P. Heritage,et al.  Strategies for realizing optical CDMA for dense, high-speed, long span, optical network applications , 2000, Journal of Lightwave Technology.

[38]  Marco Buratti,et al.  A powerful method for constructing difference families and optimal optical orthogonal codes , 1995, Des. Codes Cryptogr..

[39]  László Györfi,et al.  Constructions of binary constant-weight cyclic codes and cyclically permutable codes , 1992, IEEE Trans. Inf. Theory.

[40]  Yanxun Chang,et al.  Constructions for optimal optical orthogonal codes , 2003, Discret. Math..

[41]  R. Julian R. Abel,et al.  Some progress on (v, 4, 1) difference families and optical orthogonal codes , 2004, J. Comb. Theory, Ser. A.

[42]  Yin Jianxing,et al.  The combinatorial construction for a class of optimal optical orthogonal codes , 2002 .

[43]  I. Andonovic,et al.  Massive optical LANs using wavelength hopping/time spreading with increased security , 1996, IEEE Photonics Technology Letters.

[44]  Abraham Lempel,et al.  Families of sequences with optimal Hamming-correlation properties , 1974, IEEE Trans. Inf. Theory.

[45]  V.J. Hernandez,et al.  Spectral phase-encoded time-spreading (SPECTS) optical code-division multiple access for terabit optical access networks , 2004, Journal of Lightwave Technology.

[46]  A.E. Willner,et al.  Doubling the number of active users in a 2-D t-/spl lambda/ O-CDMA network using a hard limiting receiver , 2005, 2005 Quantum Electronics and Laser Science Conference.

[47]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[48]  Cheng-Yuan Chang,et al.  Wavelength-time codes with maximum cross-correlation function of two for multicode-keying optical CDMA , 2006, Journal of Lightwave Technology.

[49]  N. Park,et al.  A new family of space/wavelength/time spread three-dimensional optical code for OCDMA networks , 2000, Journal of Lightwave Technology.

[50]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[51]  A.J. Mendez,et al.  Temporal/spatial optical CDMA networks-design, demonstration, and comparison with temporal networks , 1992, IEEE Photonics Technology Letters.

[52]  Yanxun Chang,et al.  Optimal (4up, 5, 1) optical orthogonal codes , 2004 .

[53]  Seung-Woo Seo,et al.  New construction of multiwavelength optical orthogonal codes , 2002, IEEE Trans. Commun..

[54]  Guu-chang Yang,et al.  Optical orthogonal codes with unequal auto- and cross-correlation constraints , 1995, IEEE Trans. Inf. Theory.

[55]  Oscar Moreno,et al.  A Generalized Bose-Chowla Family of Optical Orthogonal Codes and Distinct Difference Sets , 2007, IEEE Transactions on Information Theory.

[56]  Guu-chang Yang,et al.  Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks , 1997, IEEE Trans. Commun..

[57]  Solomon W. Golomb,et al.  A new recursive construction for optical orthogonal codes , 2003, IEEE Trans. Inf. Theory.

[58]  Cunsheng Ding,et al.  Several Classes of (2m-1, w, 2) Optical Orthogonal Codes , 2003, Discret. Appl. Math..

[59]  A.E. Willner,et al.  Analytical interference model for two-dimensional (time-wavelength) asynchronous O-CDMA systems using various receiver structures , 2005, Journal of Lightwave Technology.

[60]  Charles J. Colbourn,et al.  Optimal (n, 4, 2)-OOC of small orders , 2004, Discret. Math..

[61]  James A. Davis,et al.  Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[62]  Jean-Pierre Cances,et al.  2-Dimensional Optical CDMA System Performance with Parallel Interference Cancellation , 2006, 11th IEEE Symposium on Computers and Communications (ISCC'06).

[63]  Jyh-Horng Wen,et al.  Construction and performance analysis of 2-D codes for M-ary OFFH-CDMA systems , 2007, IET Commun..

[64]  P. Vijay Kumar,et al.  Generalized Bent Functions and Their Properties , 1985, J. Comb. Theory, Ser. A.

[65]  Pavan Kumar,et al.  A new general construction for generalized bent functions , 1989, IEEE Trans. Inf. Theory.

[66]  Simon Litsyn,et al.  Discrete and continuous maxima in multicarrier communication , 2005, IEEE Transactions on Information Theory.

[67]  Ken-ichi Kitayama,et al.  Novel spatial spread spectrum based fiber optic CDMA networks for image transmission , 1994, IEEE J. Sel. Areas Commun..

[68]  P.D. Dapkus,et al.  Experimental measurement of optical phase in microdisk resonators , 2004, Digest of the LEOS Summer Topical Meetings Biophotonics/Optical Interconnects and VLSI Photonics/WBM Microcavities, 2004..

[69]  Fan Chung Graham,et al.  Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.

[70]  P. Vijay Kumar,et al.  Optical orthogonal codes-New bounds and an optimal construction , 1990, IEEE Trans. Inf. Theory.

[71]  Jingshown Wu,et al.  Construction of two-dimensional wavelength/time optical orthogonal codes using difference family , 2005, Journal of Lightwave Technology.

[72]  P. Vijay Kumar,et al.  Frequency-hopping code sequence designs having large linear span , 1988, IEEE Trans. Inf. Theory.

[73]  Tuvi Etzion,et al.  Constructions for optimal constant weight cyclically permutable codes and difference families , 1995, IEEE Trans. Inf. Theory.

[74]  P. Vijay Kumar,et al.  Codes for Optical CDMA , 2006, SETA.

[75]  Wei Liang,et al.  A new family of 2D variable-weight optical orthogonal codes for OCDMA systems supporting multiple QoS and analysis of its performance , 2008, Photonic Network Communications.

[76]  A. Selvarajan,et al.  Two-dimensional optical orthogonal codes for fiber-optic CDMA networks , 2005, Journal of Lightwave Technology.

[77]  Jianxing Yin,et al.  Some combinatorial constructions for optical orthogonal codes , 1998, Discret. Math..