Nanostructures made by mixing Rh atoms on N-adsorbed Cu(001) surface

[1]  K. Nakatsuji,et al.  Boundaries between square-shaped, nitrogen-adsorbed islands on Cu(001 ): Two relief mechanisms of the stress induced by atomic adsorbates , 2010 .

[2]  T. Iimori,et al.  Atomic and nanostructures of monolayer c(2 × 2)NiN on Cu(0 0 1) , 2010 .

[3]  J. Gupta,et al.  Tunneling spectroscopy of ultrathin insulating films: CuN on Cu(100) , 2007 .

[4]  T. Iimori,et al.  Self-assembled MnN superstructure. , 2007, Physical review letters.

[5]  Stefano de Gironcoli,et al.  Geometric and electronic structure of the N/Rh(100) system by core-level photoelectron spectroscopy : Experiment and theory , 2006 .

[6]  S. Tsuneyuki,et al.  First-principles study of inter nitrogen interaction energy of Cu(1 0 0)–c(2×2)N surface , 2002 .

[7]  Y. Girard,et al.  Measuring surface stress discontinuities in self-organized systems with X rays. , 2002, Physical review letters.

[8]  L. Proville Self-organization of (001) cubic crystal surfaces , 2001, cond-mat/0109237.

[9]  B. Croset,et al.  Self-organisation of adsorbed nitrogen on (100) and (410) copper faces: a SPA-LEED study , 2000 .

[10]  D. P. Woodruff,et al.  Inverse photoemission and Auger electron spectroscopy of Rh thin films on Cu(100) , 1995 .

[11]  Ng,et al.  Stability of periodic domain structures in a two-dimensional dipolar model. , 1995, Physical review. B, Condensed matter.

[12]  A. W. Robinson,et al.  STM observations of Cu(100)−c(2×2)N surfaces: evidence for attractive interactions and an incommensurate c(2 × 2) structure , 1994 .

[13]  T. Sakurai,et al.  Boundary structures of the (n×1) added rows of AgO chains on a Ag(110) surface , 1992 .

[14]  Schatz,et al.  Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces: Cu{100}-(2 x 1)O. , 1991, Physical review letters.

[15]  D. Vanderbilt,et al.  Spontaneous formation of stress domains on crystal surfaces. , 1988, Physical review letters.