Categories, Structures, and the Frege-Hilbert Controversy: The Status of Meta-mathematics

There is a parallel between the debate between Gottlob Frege and David Hilbert at the turn of the twentieth century and at least some aspects of the current controversy over whether category theory provides the proper framework for structuralism in the philosophy of mathematics. The main issue, I think, concerns the place and interpretation of metamathematics in an algebraic or structuralist approach to mathematics. Can meta-mathematics itself be understood in algebraic or structural terms? Or is it an exception to the slogan that mathematics is the science of structure?

[1]  Hellman Geoffrey,et al.  Structuralism without Structures , 1996, Mathematics and Its Logics.

[2]  Colin McLarty,et al.  Exploring Categorical Structuralism , 2004 .

[3]  Geoffrey Hellman,et al.  Does Category Theory Provide a Framework for Mathematical Structuralism , 2003 .

[4]  Paul Benacerraf,et al.  Philosophy of mathematics: What numbers could not be , 1965 .

[5]  D. Hilbert Über das Unendliche , 1926 .

[6]  R. G. Colodny,et al.  From quarks to quasars : philosophical problems of modern physics , 1986 .

[7]  David Hilbert Philosophy of mathematics: On the infinite , 1984 .

[8]  J. Heijenoort From Frege To Gödel , 1967 .

[9]  Colin McLarty,et al.  Numbers Can Be Just What They Have To , 1993 .

[10]  U. BLAU,et al.  ABSTRACT OBJECTS , 1981 .

[11]  Mark Wilson There's a Hole and a Bucket, Dear Leibniz , 1993 .

[12]  Steve Awodey An Answer to Hellman's Question: ‘Does Category Theory Provide a Framework for Mathematical Structuralism?’† , 2004 .

[13]  Paul Benacerraf,et al.  What the numbers could not be , 1983 .

[14]  S. Shapiro Philosophy of mathematics : structure and ontology , 1997 .

[15]  Gottlob Frege,et al.  Philosophical and mathematical correspondence , 1980 .

[16]  Gianluigi Oliveri,et al.  Mathematics. A Science of Patterns? , 1997, Synthese.

[17]  O. Spies Die grundlagen der arithmetik: by G. Frege. English translation by J. L. Austin. 119 pages, 14 × 22 cm. Breslau, Verlag von Wilhelm Koebner, 1884, and New York, Philosophical Library, 1950. Price, $4.75 , 1950 .

[18]  P. Wiener,et al.  The Encyclopedia of Philosophy. , 1968 .

[19]  Eric T. Bell,et al.  The Philosophy of Mathematics , 1950 .

[20]  Patricia A. Blanchette Frege and Hilbert on consistency , 1996 .

[21]  Gottlob Frege,et al.  The Foundations of Arithmetic , 2017 .

[22]  S. Shapiro Foundations without Foundationalism: A Case for Second-Order Logic , 1994 .

[23]  E. L. The Foundations of Geometry , 1891, Nature.

[24]  Eike-Henner W. Kluge,et al.  On the foundations of geometry and formal theories of arithmetic , 1973 .

[25]  J. E. Tiles,et al.  Frege's Conception of Numbers as Objects , 1984 .

[26]  Crispin Wright Frege's conception of numbers as objects , 1983 .

[27]  S. Shapiro,et al.  Foundations Without Foundationalism: A Case for Second-Order Logic. , 1994 .

[28]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .