AgentsLearninginaThree-ValuedLogicalSettingEvelinaLammaFabrizioRiguzziDEIS,UniversitadiBologna,VialeRisorgimento240136Bologna,Italy,felamma,friguzzig@deis.unibo .itLusMonizPereiraCentrodeIntelig^enciaArti cial(CENTRIA),DepartamendeInformatica,UniversidadeNovadeLisb oa,2825MontedaCaparica,Portugallmp@di.fct.unl.ptAbstractWeshowthattheadoptionofathree-valuedsettingforinductiveconceptlearningisparticularlyusefullearninginsingleandmultipleagentsystems.Distinguishingb etweenwhatistrue,falseandwhatisunknowncanb eusefulinsituationswheredecisionshavetob etakenonthebasisofscarceinfor-mation.Suchsituationo ccurs,forexample,whenanagentincrementallygathersinformationfromthesur-roundingworldandhastoselectitsownactionsonthebasisofsuchacquiredknowledge.Inathree-valuedsetting,welearnde nitionforb oththetargetconceptanditsopp osite,consider-ingp ositiveandnegativexamplesasinstancesoftwodisjointclasses.Tothispurp ose,weadoptExtendedLogicPrograms(ELP)underaWell-FoundedSeman-ticswithexplicitnegation(WFSX)astherepresenta-tionformalismforlearning.StandardInductiveLogicProgrammingtechniquesarethenemployedtolearntheconceptanditsopp osite.Thelearntde nitionsofthep ositiveandnegativconceptsmayoverlap,b othwhenlearningconictingrulesforapredicateanditsexplicitnegationbysin-gleagentorwhencombiningtheknowledgelearnedbymultipleagents.Inthepap er,wehandleissueofstrategiccombinationofp ossiblycontradictorylearntde nitions.1Intro ductionMostworkoninductiveconceptlearningconsidersatwo-valuedsetting.Insuchasetting,whatisnoten-tailedbythelearnedtheoryisconsideredfalse,onbasisoftheClosedWorldAssumption(CWA)[25].However,inpractice,itismoreoftenthecasethatearecon dentab outthetruthorfalsity ofonlyalimitednumb eroffacts,andarenotabletodrawanyconclu-sionab outtheremainingones,b ecauseavailableinformationisto oscarce.Likeithasb eenp ointedoutin[9,8],thisistypicallythecaseofanautonomousagentthat,inanincrementalway,gathersinforma-tionfromitssurroundingworld.Suchanagentneedstodistinguishb etweenwhatistrue,falseandwhatisunknown,andthereforeneedstolearnwithinaricherthree-valuedsetting.Forthispurp ose,weadopttheclassofExtendedLogicPrgrams(ELP,forshort,inthesequel)asrepresentationlanguageforlearninginathree-valuedsetting.ELPcontaintwokindsofnegation:defaultnegationplusasecondformofnegation,calledex-plicit,whosecombinationhasb eenrecognizedasaveryexpressivemeansofknowledgerepresentation.TheadoptionofELPallowsonetodealdirectlyinthelanguagewithincompleteknowledge,exceptionsthroughdefaultnegation,aswellwithtrulynega-tiveinformationthroughexplicitnegation[22,34].Forinstance,in[3,5,10718]itisshownhowELPareapplicabletosuchdiversedomainsofknowledgerepresentationasconcepthierarchies,reasoningab outactions,b eliefrevision,counterfactuals,diagnosis,up-datesanddebugging.Inthiswork,e rstdiscussvariousapproachesandstrategiesthatcanb eadoptedinInductiveLogicPro-gramming(ILP,henceforth)forlearningwithathree-valuedsettingsbyasingleagent.Then,wediscusshowtheknowledgelearnedbyseparateagentscanb ecombinedtoobtainacommonknowledgebase.Asin[14,13],thelearningpro cessasingleagentstartsfromasetofp ositiveandnegativexamplesplussomebackgroundknowledgeintheformofanex-1
[1]
José Júlio Alferes,et al.
Well Founded Semantics for Logic Programs with Explicit Negation
,
1992,
ECAI.
[2]
Michael Gelfond,et al.
Logic Programs with Classical Negation
,
1990,
ICLP.
[3]
Luís Moniz Pereira,et al.
Generalizing Updates: From Models to Programs
,
1997,
LPKR.
[4]
L. D. Raedt.
Interactive theory revision: an inductive logic programming approach
,
1992
.
[5]
Stan Matwin,et al.
Sub-unification: A Tool for Efficient Induction of Recursive Programs
,
1992,
ML.
[6]
Ofer Arieli,et al.
Paraconsistent Semantics for Extended Logic Programs
,
2002,
IC-AI.
[7]
Stephen Muggleton,et al.
Inverse entailment and progol
,
1995,
New Generation Computing.
[8]
Evelina Lamma,et al.
Integrating Induction and Abduction in Logic Programming
,
1999,
Inf. Sci..
[9]
Stephen Muggleton,et al.
Efficient Induction of Logic Programs
,
1990,
ALT.
[10]
José Júlio Alferes,et al.
SLX - A Top-down Derivation Procedure for Programs with Explicit Negation
,
1994,
ILPS.
[11]
Luís Moniz Pereira,et al.
Strategies in Combined Learning via Logic Programs
,
2004,
Machine Learning.
[12]
Aiko M. Hormann,et al.
Programs for Machine Learning. Part I
,
1962,
Inf. Control..
[13]
Saso Dzeroski,et al.
Inductive Logic Programming: Techniques and Applications
,
1993
.
[14]
Kenneth A. Ross,et al.
The well-founded semantics for general logic programs
,
1991,
JACM.
[15]
Luc De Raedt,et al.
On Negation and Three-Valued Logic in Interactive Concept-Learning
,
1990,
ECAI.
[16]
Luís Moniz Pereira,et al.
Prolegomena to Logic Programming for Non-monotonic Reasoning
,
1996,
NMELP.
[17]
Gordon Plotkin,et al.
A Note on Inductive Generalization
,
2008
.
[18]
Luís Moniz Pereira,et al.
Abduction over 3-Valued Extended Logic Programs
,
1995,
International Conference on Logic Programming and Non-Monotonic Reasoning.
[19]
Stephen Muggleton,et al.
Machine Invention of First Order Predicates by Inverting Resolution
,
1988,
ML.
[20]
José Júlio Alferes,et al.
Reasoning with Logic Programming
,
1996,
Lecture Notes in Computer Science.
[21]
José Júlio Alferes,et al.
Dynamic Logic Programming
,
1998,
APPIA-GULP-PRODE.
[22]
Chitta Baral,et al.
Logic Programming and Knowledge Representation
,
1994,
J. Log. Program..
[23]
Jürgen Dix,et al.
A Classification Theory of Semantics of Normal Logic Programs: I. Strong Properties
,
1995,
Fundam. Informaticae.
[24]
Katsumi Inoue,et al.
Learning Abductive and Nonmonotonic Logic Programs
,
2000
.
[25]
José Júlio Alferes,et al.
'Classical' Negation in Nonmonotonic Reasoning and Logic Programming
,
1998,
Journal of Automated Reasoning.
[26]
Ryszard S. Michalski,et al.
Discovering Classification Rules Using variable-Valued Logic System VL1
,
1973,
IJCAI.
[27]
Stephen Muggleton,et al.
Non-monotonic learning
,
1991
.