New results in decentralized adaptive non-linear stabilization using output feedback

This paper proposes new results in decentralized adaptive stabilization for a class of large-scale non-linear systems with output measurements. Like previous work, the parametric uncertainty does not satisfy any matching conditions and the uncertain interconnections may be highly non-linear. Unlike most previous results in the literature of decentralized control, the development of our systematic approach does not rely on the crucial assumption that the (unmeasured) zero-dynamics of each individual local system are linear and enter the system additively and linearly. Simulation results based on a practical example of two inverted pendulums on carts demonstrate the effectiveness of the proposed decentralized adaptive stabilization methodology.

[1]  Hassan K. Khalil,et al.  DECENTRALIZED STABILIZATION OF INTERCONNECTED SYSTEMS USING OUTPUT FEEDBACK. , 1985 .

[2]  Petros A. Ioannou Decentralized adaptive control of interconnected systems , 1986 .

[3]  D. D. Siljak,et al.  Decentralized Adaptive Control: Structural Conditions for Stability , 1988, 1988 American Control Conference.

[4]  Romeo Ortega,et al.  A solution to the decentralized adaptive stabilization problem , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[5]  Lin Shi,et al.  Decentralized Adaptive Controller Design For Large-Scale Systems With Higher-Order Interconnections , 1992, 1992 American Control Conference.

[6]  L. Praly,et al.  Stabilization by output feedback for systems with ISS inverse dynamics , 1993 .

[7]  W. Dayawansa,et al.  Global stabilization by output feedback: examples and counterexamples , 1994 .

[8]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[9]  C. Wen Decentralized adaptive regulation , 1994, IEEE Trans. Autom. Control..

[10]  Eduardo Sontag,et al.  Changing supply functions in input/state stable systems , 1995, IEEE Trans. Autom. Control..

[11]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[12]  Eduardo D. Sontag,et al.  On the Input-to-State Stability Property , 1995, Eur. J. Control.

[13]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[14]  Ye-Hwa Chen,et al.  Decentralized control design: uncertain systems with strong interconnections , 1995 .

[15]  H. Khalil Adaptive output feedback control of nonlinear systems represented by input-output models , 1996, IEEE Trans. Autom. Control..

[16]  Zhong-Ping Jiang,et al.  A small-gain control method for nonlinear cascaded systems with dynamic uncertainties , 1997, IEEE Trans. Autom. Control..

[17]  M. Jankovic Adaptive nonlinear output feedback tracking with a partial high-gain observer and backstepping , 1997, IEEE Trans. Autom. Control..

[18]  S. Jain,et al.  Decentralized adaptive output feedback design for large-scale nonlinear systems , 1997, IEEE Trans. Autom. Control..

[19]  Zhong-Ping Jiang,et al.  Design of Robust Adaptive Controllers for Nonlinear Systems with Dynamic Uncertainties , 1998, Autom..

[20]  M. Basar,et al.  Disturbance Attenuating Adaptive Controllers for Parametric Strict Feedback Nonlinear Systems With Output Measurements , 1999 .

[21]  Zhong-Ping Jiang,et al.  A combined backstepping and small-gain approach to adaptive output feedback control , 1999, Autom..

[22]  Zhong-Ping Jiang,et al.  Global output-feedback tracking for a benchmark nonlinear system , 2000, IEEE Trans. Autom. Control..

[23]  Zhong-Ping Jiang,et al.  Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback , 2000, IEEE Trans. Autom. Control..