On Γ-Interval Valued Fuzzification of Lagrange’s Theorem of Γ-Interval Valued Fuzzy Subgroups

In this paper, we present the idea of interval valued fuzzy subgroup defined over a certain t-conorm (<inline-formula> <tex-math notation="LaTeX">$\mathrm {\Gamma }$ </tex-math></inline-formula>-IVFSG) and prove that every IVFSG is <inline-formula> <tex-math notation="LaTeX">$\mathrm {\Gamma }$ </tex-math></inline-formula>-IVFSG. We use this ideology to define the concepts of <inline-formula> <tex-math notation="LaTeX">$\Gamma $ </tex-math></inline-formula>-IVF cosets, <inline-formula> <tex-math notation="LaTeX">$\mathrm {\Gamma }$ </tex-math></inline-formula>-IVFNSG and formulate their various important algebraic characteristics. We also propose the study of the notion of level subgroups of <inline-formula> <tex-math notation="LaTeX">$\mathrm {\Gamma }$ </tex-math></inline-formula>-IVFSG and investigate the condition under which a <inline-formula> <tex-math notation="LaTeX">$\mathrm {\Gamma }$ </tex-math></inline-formula>-IVFS is <inline-formula> <tex-math notation="LaTeX">$\Gamma $ </tex-math></inline-formula>-IVFSG. Moreover, we extend the study of this phenomenon to introduce the concept of quotient group of a group <inline-formula> <tex-math notation="LaTeX">$Z$ </tex-math></inline-formula> relative to the <inline-formula> <tex-math notation="LaTeX">$\Gamma $ </tex-math></inline-formula>-IVFNSG and acquire a correspondence between each <inline-formula> <tex-math notation="LaTeX">$\Gamma $ </tex-math></inline-formula>-IVF(N)SG of a group <inline-formula> <tex-math notation="LaTeX">$Z$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\Gamma $ </tex-math></inline-formula>-IVF(N)SG of its quotient group. Furthermore, we define the index of <inline-formula> <tex-math notation="LaTeX">$\Gamma $ </tex-math></inline-formula>-IVFSG and establish the <inline-formula> <tex-math notation="LaTeX">$\Gamma $ </tex-math></inline-formula>-interval valued fuzzification of Lagrange’s theorem of any <inline-formula> <tex-math notation="LaTeX">$\Gamma $ </tex-math></inline-formula>-IVFSG of a finite group <inline-formula> <tex-math notation="LaTeX">$Z$ </tex-math></inline-formula>.

[1]  Salah Abou-Zaid On fuzzy subgroups , 1993 .

[2]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[3]  D. Gumber On the definition of fuzzy subgroup , 2011 .

[4]  M. Gorzałczany A method for inference in approximate reasoning based on interval-valued fuzzy sets , 1987 .

[5]  R. Biswas,et al.  I-v fuzzy relations and Sanchez's approach for medical diagnosis , 1992 .

[6]  Keon-Myung Lee,et al.  Comparison of Interval-valued fuzzy sets, Intuitionistic fuzzy sets, and bipolar-valued fuzzy sets , 2004 .

[7]  Hyemi Choi,et al.  A MEDICAL DIAGNOSIS BASED ON INTERVAL-VALUED FUZZY SETS , 2012 .

[8]  K. Hur,et al.  INTERVAL-VALUED FUZZY SUBGROUPS , 2013 .

[9]  M. Gupta,et al.  Theory of T -norms and fuzzy inference methods , 1991 .

[10]  Mai Gehrke,et al.  Some comments on interval valued fuzzy sets , 1996, Int. J. Intell. Syst..

[11]  J. Goguen L-fuzzy sets , 1967 .

[12]  Prabir Bhattacharya,et al.  Fuzzy subgroups: Some characterizations , 1987 .

[13]  Prabir Bhattacharya,et al.  Fuzzy normal subgroups and fuzzy cosets , 1984, Inf. Sci..

[14]  Jeong-Yong Ahn,et al.  AN APPLICATION OF INTERVAL-VALUED INTUITIONISTIC FUZZY SETS FOR MEDICAL DIAGNOSIS OF HEADACHE , 2011 .

[15]  K. Atanassov,et al.  Interval-Valued Intuitionistic Fuzzy Sets , 2019, Studies in Fuzziness and Soft Computing.

[16]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[17]  Chunfang Liu,et al.  A Novel Entropy of Interval Valued Fuzzy Set , 2015 .

[18]  I. Turksen Interval valued fuzzy sets based on normal forms , 1986 .

[19]  Wang-jin Liu,et al.  Fuzzy invariant subgroups and fuzzy ideals , 1982 .

[20]  W. Asghar,et al.  On Some Characterizations of o-fuzzy subgroups , 2018 .

[21]  Mustafa Akgül,et al.  Some properties of fuzzy groups , 1988 .

[22]  H. Kang INTERVAL-VALUED FUZZY SUBGROUPS AND HOMOMORPHISMS , 2011 .

[23]  P. Das Fuzzy groups and level subgroups , 1981 .

[25]  J. M Anthony,et al.  Fuzzy groups redefined , 1979 .

[26]  Robert Ivor John,et al.  Interval-valued fuzzy decision trees , 2010, International Conference on Fuzzy Systems.

[27]  Jeong Gon Lee,et al.  INTERVAL-VALUED FUZZY RELATIONS , 2009 .

[28]  W. Marsden I and J , 2012 .

[29]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..