Postmaneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions
暂无分享,去创建一个
[1] Alireza Doostan,et al. Satellite collision probability estimation using polynomial chaos expansions , 2013 .
[2] Christoph Schwab,et al. Sparse Tensor Galerkin Discretization of Parametric and Random Parabolic PDEs - Analytic Regularity and Generalized Polynomial Chaos Approximation , 2013, SIAM J. Math. Anal..
[3] Michael Elad,et al. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..
[4] R. Patera. General Method for Calculating Satellite Collision Probability , 2001 .
[5] D. Anderson,et al. Algorithms for minimization without derivatives , 1974 .
[6] Deanna Needell,et al. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.
[7] Sean G. Ryan,et al. The Advanced Maui Optical and Space Surveillance Technologies Conference , 2006 .
[8] Jing Li,et al. An efficient surrogate-based method for computing rare failure probability , 2011, J. Comput. Phys..
[9] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[10] Xiu Yang,et al. Adaptive ANOVA decomposition of stochastic incompressible and compressible flows , 2012, J. Comput. Phys..
[11] S. Mallat,et al. Adaptive greedy approximations , 1997 .
[12] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[13] Wuan Luo. Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations , 2006 .
[14] E.J. Candes,et al. An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.
[15] Salvatore Alfanol,et al. A Numerical Implementation of Spherical Object Collision Probability , 2005 .
[16] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[17] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] D. Vallado. Fundamentals of Astrodynamics and Applications , 1997 .
[19] W. Folkner,et al. The Planetary and Lunar Ephemeris DE 421 , 2009 .
[20] Gene H. Golub,et al. Matrix computations , 1983 .
[21] F. Markley,et al. Current-State Constrained Filter Bank for Wald Testing of Spacecraft Conjunctions , 2012 .
[22] J. Dormand,et al. High order embedded Runge-Kutta formulae , 1981 .
[23] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[24] David L. Donoho,et al. Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .
[25] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[26] Roger Ghanem,et al. Ingredients for a general purpose stochastic finite elements implementation , 1999 .
[27] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[28] Deanna Needell,et al. Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit , 2007, IEEE Journal of Selected Topics in Signal Processing.
[29] G. Iaccarino,et al. Non-intrusive low-rank separated approximation of high-dimensional stochastic models , 2012, 1210.1532.
[30] Stephen J. Wright,et al. Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.
[31] Roger G. Ghanem,et al. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..
[32] Xiang Ma,et al. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..
[33] D. Phillion,et al. Monte Carlo Method for Collision Probability Calculations using 3 D Satellite Models , 2010 .
[34] A. Nouy. Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .
[35] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[36] By A. Doostan,et al. A least-squares approximation of high-dimensional uncertain systems , 2022 .
[37] F. Markley,et al. Wald Sequential Probability Ratio Test for Analysis of Orbital Conjunction Data , 2013 .
[38] J. Tropp,et al. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.
[39] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[40] Omar M. Knio,et al. Spectral Methods for Uncertainty Quantification , 2010 .
[41] Alireza Doostan,et al. A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..
[42] A. Doostan,et al. Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos , 2013 .
[43] Gianluca Iaccarino,et al. A least-squares approximation of partial differential equations with high-dimensional random inputs , 2009, J. Comput. Phys..
[44] Y. C. Pati,et al. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.
[45] Matthew M. Berry,et al. Implementation of Gauss-Jackson Integration for Orbit Propagation , 2004 .
[46] Joel A. Tropp,et al. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.
[47] G. Petit,et al. IERS Conventions (2010) , 2010 .
[48] Donald W. Phillion,et al. Monte Carlo Method for Collision Probability Calculations Using 3D Satellite Models , 2010 .
[49] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .