Postmaneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions

This paper describes the use of polynomial chaos expansions to approximate the probability of a collision between two satellites after at least one performs a translation maneuver. Polynomial chaos provides a computationally efficient means to generate an approximate solution to a stochastic differential equation without introducing any assumptions on the a posteriori distribution. The stochastic solution then allows for orbit state uncertainty propagation. For the maneuvering spacecraft in the presented scenarios, the polynomial chaos expansion is sparse, allowing for the use of compressive sampling methods to improve solution tractability. This paper first demonstrates the use of these techniques for possible intraformation collisions for the Magnetospheric Multi-Scale mission. The techniques are then applied to a potential collision with debris in low Earth orbit. Results demonstrate that these polynomial chaos-based methods provide a Monte Carlo-like estimate of the collision probability, including ad...

[1]  Alireza Doostan,et al.  Satellite collision probability estimation using polynomial chaos expansions , 2013 .

[2]  Christoph Schwab,et al.  Sparse Tensor Galerkin Discretization of Parametric and Random Parabolic PDEs - Analytic Regularity and Generalized Polynomial Chaos Approximation , 2013, SIAM J. Math. Anal..

[3]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[4]  R. Patera General Method for Calculating Satellite Collision Probability , 2001 .

[5]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[6]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[7]  Sean G. Ryan,et al.  The Advanced Maui Optical and Space Surveillance Technologies Conference , 2006 .

[8]  Jing Li,et al.  An efficient surrogate-based method for computing rare failure probability , 2011, J. Comput. Phys..

[9]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[10]  Xiu Yang,et al.  Adaptive ANOVA decomposition of stochastic incompressible and compressible flows , 2012, J. Comput. Phys..

[11]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[12]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[13]  Wuan Luo Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations , 2006 .

[14]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[15]  Salvatore Alfanol,et al.  A Numerical Implementation of Spherical Object Collision Probability , 2005 .

[16]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[17]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[19]  W. Folkner,et al.  The Planetary and Lunar Ephemeris DE 421 , 2009 .

[20]  Gene H. Golub,et al.  Matrix computations , 1983 .

[21]  F. Markley,et al.  Current-State Constrained Filter Bank for Wald Testing of Spacecraft Conjunctions , 2012 .

[22]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[23]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[24]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[25]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[26]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[27]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[28]  Deanna Needell,et al.  Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit , 2007, IEEE Journal of Selected Topics in Signal Processing.

[29]  G. Iaccarino,et al.  Non-intrusive low-rank separated approximation of high-dimensional stochastic models , 2012, 1210.1532.

[30]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[31]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[32]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[33]  D. Phillion,et al.  Monte Carlo Method for Collision Probability Calculations using 3 D Satellite Models , 2010 .

[34]  A. Nouy Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .

[35]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[36]  By A. Doostan,et al.  A least-squares approximation of high-dimensional uncertain systems , 2022 .

[37]  F. Markley,et al.  Wald Sequential Probability Ratio Test for Analysis of Orbital Conjunction Data , 2013 .

[38]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[39]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[40]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[41]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[42]  A. Doostan,et al.  Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos , 2013 .

[43]  Gianluca Iaccarino,et al.  A least-squares approximation of partial differential equations with high-dimensional random inputs , 2009, J. Comput. Phys..

[44]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[45]  Matthew M. Berry,et al.  Implementation of Gauss-Jackson Integration for Orbit Propagation , 2004 .

[46]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[47]  G. Petit,et al.  IERS Conventions (2010) , 2010 .

[48]  Donald W. Phillion,et al.  Monte Carlo Method for Collision Probability Calculations Using 3D Satellite Models , 2010 .

[49]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .