Photonic metamaterials by direct laser writing and silver chemical vapor deposition

We fabricate planar magnetic photonic metamaterials via direct laser writing and silver chemical vapor deposition, an approach, which is also suitable for three-dimensional structures. Retrieval of the effective metamaterial parameters reveals the importance of bi-anisotropy.

[1]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[2]  Jin Au Kong,et al.  Retrieval of the effective constitutive parameters of bianisotropic metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  U. Leonhardt,et al.  Quantum levitation by left-handed metamaterials , 2006, quant-ph/0608115.

[4]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[5]  M. Wegener,et al.  Transition between corrugated metal films and split-ring-resonator arrays , 2009 .

[6]  Harald Giessen,et al.  Negative permeability around 630 nm in nanofabricated vertical meander metamaterials , 2007 .

[7]  Wenshan Cai,et al.  Metamagnetics with rainbow colors. , 2007, Optics express.

[8]  E. Eisenbraun,et al.  Low temperature metalorganic chemical vapor deposition of conformal silver coatings for applications in high aspect ratio structures , 2001 .

[9]  Bungay,et al.  Equivalency of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical activity on reflection. , 1993, Physical review. B, Condensed matter.

[10]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[11]  Francisco Medina,et al.  Role of bianisotropy in negative permeability and left-handed metamaterials , 2002 .

[12]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[13]  V. Shalaev Optical negative-index metamaterials , 2007 .

[14]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[15]  D. Heitmann,et al.  Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration , 1999 .

[16]  M. Wegener,et al.  Periodic nanostructures for photonics , 2007 .

[17]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[18]  Satoshi Kawata,et al.  Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization. , 2006, Optics express.

[19]  Shuang Zhang,et al.  Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. , 2005, Physical review letters.

[20]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[21]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[22]  G Dolling,et al.  Realization of a three-functional-layer negative-index photonic metamaterial. , 2007, Optics letters.

[23]  H. Giessen,et al.  Three-dimensional metamaterials at optical frequencies , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[24]  J. Melngailis,et al.  Fast room‐temperature growth of SiO2 films by molecular‐layer dosing , 1991 .

[25]  Jin Au Kong,et al.  Erratum: Retrieval of the effective constitutive parameters of bianisotropic metamaterials [Phys. Rev. E 71, 046610 (2005)] , 2006 .

[26]  Stefan Linden,et al.  Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation. , 2009, Optics letters.

[27]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[28]  S. Linden,et al.  Photonic metamaterials by direct laser writing and silver chemical vapour deposition. , 2008, Nature materials.

[29]  M. Hampden‐Smith,et al.  Chemical vapor deposition of metals: Part 1. An overview of CVD processes , 1995 .

[30]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[31]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.