Compositional Performance Modelling with TIPPtool

Stochastic Process Algebras have been proposed as compositional specification formalisms for performance models. In this paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool. It incorporates methods for compositional specification as well as solution, based on state-of-the-art-techniques, and wrapped in a user-friendly graphical front end.

[1]  Stephen Gilmore,et al.  The PEPA Workbench: A Tool to Support a Process Algebra-based Approach to Performance Modelling , 1994, Computer Performance Evaluation.

[2]  Alain Kerbrat,et al.  Protocol verification with the ALDÉBARAN toolset , 1997, International Journal on Software Tools for Technology Transfer.

[3]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[4]  Nadia Tawbi,et al.  Specification and Verification of the PowerScaleTM Bus Arbitration Protocol: An Industrial Experiment with LOTOS , 1996, FORTE.

[5]  Holger Hermanns,et al.  Stochastic Process Algebras - Between LOTOS and Markov Chains , 1998, Comput. Networks.

[6]  Roberto Gorrieri,et al.  Extended Markovian Process Algebra , 1996, CONCUR.

[7]  Gianni Conte,et al.  PERFORMANCE ANALYSIS OF MULTIPROCESSOR SYSTEMS , 1985 .

[8]  Ulrich Herzog,et al.  Stochastic process algebras as a tool for performance and dependability modelling , 1995, Proceedings of 1995 IEEE International Computer Performance and Dependability Symposium.

[9]  Christel Baier,et al.  Polynomial Time Algorithms for Testing Probabilistic Bisimulation and Simulation , 1996, CAV.

[10]  Holger Hermanns,et al.  Formal Characterisation of Immediate Actions in SPA with Nondeterministic Branching , 1995, Comput. J..

[11]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[12]  Ulrich Herzog,et al.  Formal Description, Time and Performance Analysis. A Framework , 1990, Entwurf und Betrieb verteilter Systeme.

[13]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[14]  Marco Ajmone Marsan,et al.  Performance models of multiprocessor systems , 1987, MIT Press series in computer systems.

[15]  Joost-Pieter Katoen,et al.  An algebraic approach to the specification of stochastic systems , 1998, PROCOMET.

[16]  Franz Hartleb,et al.  Performance Evaluation of Parallel Programs - Modeling and Monitoring with the Tool PEPP , 1993, MMB.

[17]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[18]  Tommaso Bolognesi,et al.  Tableau methods to describe strong bisimilarity on LOTOS processes involving pure interleaving and enabling , 1994, FORTE.

[19]  Norbert Götz,et al.  Multiprocessor and Distributed System Design: The Integration of Functional Specification and Performance Analysis Using Stochastic Process Algebras , 1993, Performance/SIGMETRICS Tutorials.

[20]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[21]  Corrado Priami,et al.  Stochastic pi-Calculus , 1995, Comput. J..

[22]  Markus Siegle,et al.  Technique and tool for symbolic representation and manipulation of stochastic transition systems , 1998, Proceedings. IEEE International Computer Performance and Dependability Symposium. IPDS'98 (Cat. No.98TB100248).

[23]  Diego Latella,et al.  Partial Order Models for Quantitative Extensions of LOTOS , 1998, Comput. Networks.

[24]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[25]  Arturo Azcorra,et al.  Tool Support to Implement LOTOS Formal Specifications , 1993, Comput. Networks ISDN Syst..