Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

[1]  T. Tolker-Nielsen,et al.  Pseudomonas aeruginosa Biofilm Infections: Community Structure, Antimicrobial Tolerance and Immune Response. , 2015, Journal of molecular biology.

[2]  Nathalie Caroff,et al.  Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells. , 2015, Pathogens and disease.

[3]  W. V. van Wamel,et al.  Staphylococcus epidermidis originating from titanium implants infects surrounding tissue and immune cells. , 2014, Acta biomaterialia.

[4]  Lilia Coronato Courrol,et al.  A simple and effective method to synthesize fluorescent nanoparticles using tryptophan and light and their lethal effect against bacteria. , 2014, Journal of photochemistry and photobiology. B, Biology.

[5]  F. Salehian,et al.  The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater. , 2014, Water science and technology : a journal of the International Association on Water Pollution Research.

[6]  P. Malfertheiner,et al.  Use of a combination formulation of bismuth, metronidazole and tetracycline with omeprazole as a rescue therapy for eradication of Helicobacter pylori , 2014, Alimentary pharmacology & therapeutics.

[7]  Carolina Alves Dos Santos,et al.  Silver nanoparticles: therapeutical uses, toxicity, and safety issues. , 2014, Journal of pharmaceutical sciences.

[8]  C. R. Raj,et al.  Antimicrobial activity of fluorescent Ag nanoparticles , 2014, Letters in applied microbiology.

[9]  C. Balachandran,et al.  Size-dependent antimicrobial response of zinc oxide nanoparticles. , 2014, IET nanobiotechnology.

[10]  S. Obare,et al.  Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles , 2014, PloS one.

[11]  S. Silver,et al.  Antimicrobial silver: uses, toxicity and potential for resistance , 2013, BioMetals.

[12]  I. Zumeta-Dubé,et al.  Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation , 2013, International journal of nanomedicine.

[13]  Liyuan Ma,et al.  Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. , 2013, Nanoscale.

[14]  S. S. Gauri,et al.  Antimicrobial activity of caO nanoparticles. , 2013, Journal of biomedical nanotechnology.

[15]  M. Faramarzi,et al.  The Antimicrobial Effects and Metabolomic Footprinting of Carboxyl-Capped Bismuth Nanoparticles Against Helicobacter pylori , 2013, Applied Biochemistry and Biotechnology.

[16]  A. Grudniak,et al.  Silver nanoparticles as an alternative strategy against bacterial biofilms. , 2013, Acta biochimica Polonica.

[17]  Morteza Mahmoudi,et al.  Antibacterial properties of nanoparticles. , 2012, Trends in biotechnology.

[18]  L. Ilharco,et al.  Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[19]  C. Anania,et al.  Review article: bismuth‐based therapy for Helicobacter pylori eradication in children , 2012, Alimentary pharmacology & therapeutics.

[20]  K. Arévalo-Niño,et al.  Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm , 2012, International journal of nanomedicine.

[21]  R. Ge,et al.  The actions of bismuth in the treatment of Helicobacter pylori infections: an update. , 2012, Metallomics : integrated biometal science.

[22]  Guowei Yang Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials , 2012 .

[23]  Antônio Adilson Soares de Lima,et al.  Bismuth subgallate as a topical haemostatic agent at the palatal wounds: a histologic study in dogs. , 2012, International journal of oral and maxillofacial surgery.

[24]  Young Jik Kwon,et al.  "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[25]  Amitava Mukherjee,et al.  Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species. , 2011, Colloids and surfaces. B, Biointerfaces.

[26]  Abdelwahab Omri,et al.  Bismuth‐ethanedithiol incorporated in a liposome‐loaded tobramycin formulation modulates the alginate levels in mucoid Pseudomonas aeruginosa , 2011, The Journal of pharmacy and pharmacology.

[27]  A. Gedanken,et al.  Enhanced inactivation of bacteria by metal‐oxide nanoparticles combined with visible light irradiation , 2011, Lasers in surgery and medicine.

[28]  Amit Kumar,et al.  Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. , 2010, Journal of hazardous materials.

[29]  Bing Wu,et al.  Anti-microbial activities of aerosolized transition metal oxide nanoparticles. , 2010, Chemosphere.

[30]  B. Quinn,et al.  Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[31]  Ruchi Yadav,et al.  Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[32]  Ke Karlovu,et al.  The bactericidal effect of silver nanoparticles , 2010 .

[33]  Wei Jiang,et al.  Bacterial toxicity comparison between nano- and micro-scaled oxide particles. , 2009, Environmental pollution.

[34]  Fiona Regan,et al.  The use of nanoparticles in anti-microbial materials and their characterization. , 2008, The Analyst.

[35]  Walter H. Chang,et al.  Studies of photokilling of bacteria using titanium dioxide nanoparticles. , 2008, Artificial organs.

[36]  Eun-Cheol Kim,et al.  Evaluation of the radiopacity and cytotoxicity of Portland cements containing bismuth oxide. , 2008, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[37]  Samantha Rice,et al.  Bismuth Subgallate/Borneol (Suile) Is Superior to Bacitracin in the Human Forearm Biopsy Model for Acute Wound Healing , 2007, Advances in skin & wound care.

[38]  Yulong Ding,et al.  Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) , 2007 .

[39]  R. Giridhar,et al.  Bismuth-norfloxacin complex: synthesis, physicochemical and antimicrobial evaluation. , 2007, International journal of pharmaceutics.

[40]  M. Gurruchaga,et al.  Acrylic bone cements with bismuth salicylate: Behavior in simulated physiological conditions. , 2007, Journal of biomedical materials research. Part A.

[41]  G. Deacon,et al.  Towards a structural understanding of the anti-ulcer and anti-gastritis drug bismuth subsalicylate. , 2006, Angewandte Chemie.

[42]  H. Kohn,et al.  Bismuth-dithiol inhibition of the Escherichia coli rho transcription termination factor. , 2005, Journal of inorganic biochemistry.

[43]  S. Veldhuyzen van Zanten,et al.  Interaction of Bismuth Subsalicylate with Fruit Juices, Ascorbic Acid, and Thiol-Containing Substrates To Produce Soluble Bismuth Products Active against Clostridium difficile , 2005, Antimicrobial Agents and Chemotherapy.

[44]  Vincent M Rotello,et al.  Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. , 2004, Bioconjugate chemistry.

[45]  Chi-Hung Lin,et al.  Effect of bismuth subgallate on nitric oxide and prostaglandin E2 production by macrophages. , 2004, Biochemical and biophysical research communications.

[46]  M. Schaller,et al.  Toxicity and Antimicrobial Activity of a Hydrocolloid Dressing Containing Silver Particles in an ex vivo Model of Cutaneous Infection , 2003, Skin Pharmacology and Physiology.

[47]  R. G. Richards,et al.  An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review. , 2002, European cells & materials.

[48]  M. Machado,et al.  Effect of bismuth subgallate (local hemostatic agent) on wound healing in rats. Histological and histometric findings. , 2002, Brazilian dental journal.

[49]  L. Tillman,et al.  safety of bismuth in the treatment of gastrointestinal diseases , 1996, Alimentary pharmacology & therapeutics.

[50]  M. Manhart In vitro antimicrobial activity of bismuth subsalicylate and other bismuth salts. , 1990, Reviews of infectious diseases.

[51]  S. Gorbach,et al.  In vitro antibacterial activity of bismuth subsalicylate. , 1990, Reviews of infectious diseases.

[52]  T. Sox,et al.  Binding and killing of bacteria by bismuth subsalicylate , 1989, Antimicrobial Agents and Chemotherapy.

[53]  F. Wolff,et al.  Pharmacokinetics and Toxicity of Bismuth Compounds , 1989, Medical toxicology and adverse drug experience.

[54]  J. Andreasen,et al.  In vitro susceptibility of Campylobacter pyloridis to cimetidine, sucralfate, bismuth and sixteen antibiotics. , 2009, Acta pathologica, microbiologica, et immunologica Scandinavica. Section B, Microbiology.

[55]  H. Dupont Bismuth Subsalicylate in the Treatment and Prevention of Diarrheal Disease , 1987, Drug intelligence & clinical pharmacy.

[56]  R. Douglas,et al.  Bismuth subsalicylate therapy of viral gastroenteritis. , 1980, Gastroenterology.

[57]  H. Dupont,et al.  Bismuth subsalicylate inhibits activity of crude toxins of Escherichia coli and Vibrio cholerae. , 1977, The Journal of infectious diseases.

[58]  H. Dupont,et al.  Symptomatic treatment of diarrhea with bismuth subsalicylate among students attending a Mexican university. , 1977, Gastroenterology.

[59]  O. A. Pardo,et al.  The treatment of early syphilis with penicillin and bismuth subsalicylate; follow-up report. , 1952, American journal of syphilis, gonorrhea, and venereal diseases.

[60]  J. E. Purvis CCCLXI.—The absorption spectra of various alkaloids and their salicylates and of other derivatives of salicylic acid , 1927 .

[61]  J. E. Purvis CV.—The absorption spectra of various derivatives of salicylic acid , 1926 .