of the c-myb proto-oncogene . Protein truncation is required for the activation

[1]  J. Lipsick,et al.  Determinants of sequence-specific DNA-binding by p48v-myb. , 1991, Oncogene.

[2]  T. Graf,et al.  Mutations in v-myb alter the differentiation of myelomonocytic cells transformed by the oncogene , 1990, Cell.

[3]  T. Graf,et al.  Transformation by v-myb correlates with trans-activation of gene expression , 1990, Molecular and cellular biology.

[4]  G. Shen-Ong The myb oncogene. , 1990, Biochimica et biophysica acta.

[5]  K. Moelling,et al.  Transcriptional activation by human c-myb and v-myb genes. , 1990, Oncogene.

[6]  J. Lipsick,et al.  trans activation of gene expression by v-myb , 1990, Molecular and cellular biology.

[7]  E. Krebs,et al.  Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation , 1990, Nature.

[8]  T. Graf,et al.  The v-myb oncogene product binds to and activates the promyelocyte-specific mim-1 gene , 1989, Cell.

[9]  R. Eisenman,et al.  A second c-myb protein is translated from an alternatively spliced mRNA expressed from normal and 5'-disrupted myb loci , 1989, Molecular and cellular biology.

[10]  K. Klempnauer,et al.  Activation of transcription by v-myb: evidence for two different mechanisms. , 1989, Genes & development.

[11]  H. Dudek,et al.  Identification of two translational products for c-myb. , 1989, Oncogene.

[12]  T. Nagase,et al.  Delineation of three functional domains of the transcriptional activator encoded by the c-myb protooncogene. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[13]  T. Gonda,et al.  Activation of c‐myb by carboxy‐terminal truncation: relationship to transformation of murine haemopoietic cells in vitro. , 1989, The EMBO journal.

[14]  W. S. Hayward,et al.  Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events , 1989, Molecular and cellular biology.

[15]  T. Gonda,et al.  Murine myeloid cell lines derived by in vitro infection with recombinant c‐myb retroviruses express myb from rearranged vector proviruses. , 1989, The EMBO journal.

[16]  E. H. Humphries,et al.  RAV-1 insertional mutagenesis: disruption of the c-myb locus and development of avian B-cell lymphomas , 1989, Journal of virology.

[17]  S. Ishii,et al.  Characterization of alternate and truncated forms of murine c-myb proteins. , 1989, Oncogene research.

[18]  T. Graf,et al.  A single point mutation in the v-ets oncogene affects both erythroid and myelomonocytic cell differentiation , 1988, Cell.

[19]  A. E. Sippel,et al.  Viral myb oncogene encodes a sequence-specific DNA-binding activity , 1988, Nature.

[20]  J. Lipsick,et al.  Structural and functional domains of the myb oncogene: requirements for nuclear transport, myeloid transformation, and colony formation , 1988, Journal of virology.

[21]  W. S. Hayward,et al.  Rapid induction of B-cell lymphomas: insertional activation of c-myb by avian leukosis virus , 1988, Journal of virology.

[22]  M. Clarke,et al.  Constitutive expression of a c-myb cDNA blocks Friend murine erythroleukemia cell differentiation. , 1988, Molecular and cellular biology.

[23]  J. Lipsick v-myb does not prevent the expression of c-myb in avian erythroblasts , 1987, Journal of virology.

[24]  S. Hughes,et al.  Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors , 1987, Journal of virology.

[25]  H. Okayama,et al.  High-efficiency transformation of mammalian cells by plasmid DNA. , 1987, Molecular and cellular biology.

[26]  T. Graf,et al.  Reversibility of differentiation and proliferative capacity in avian myelomonocytic cells transformed by tsE26 leukemia virus. , 1987, Genes & development.

[27]  Y. Mándi,et al.  Granulocyte-specific monoclonal antibody inhibiting cytotoxicity reactions in the chicken. , 1987, Immunobiology.

[28]  J. Lipsick,et al.  env-encoded residues are not required for transformation by p48v-myb , 1987, Journal of virology.

[29]  J. Bishop The molecular genetics of cancer. , 1987, Science.

[30]  J. Bishop,et al.  Structure of the protein encoded by the chicken proto-oncogene c-myb , 1986, Molecular and cellular biology.

[31]  J. Lipsick,et al.  Expression of molecular clones of v-myb in avian and mammalian cells independently of transformation , 1986, Journal of virology.

[32]  J. Lipsick,et al.  Antibodies to the evolutionarily conserved amino-terminal region of the v-myb-encoded protein detect the c-myb protein in widely divergent metazoan species. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[33]  E. Reddy,et al.  Nucleotide sequence of chicken c-myb complementary DNA and implications for myb oncogene activation , 1986, Nature.

[34]  T. Kornberg,et al.  Isolation of the proto-oncogene c-myb from D. melanogaster , 1985, Cell.

[35]  E. Chen,et al.  Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. , 1985, DNA.

[36]  C. Moscovici Target Cells for Avian Leukemia Viruses Revisited , 1985 .

[37]  T. Graf,et al.  Purification and characterization of cMGF, a novel chicken myelomonocytic growth factor. , 1984, The EMBO journal.

[38]  G. Evan,et al.  Isolation of monoclonal antibodies specific for products of avian oncogene myb , 1984, Molecular and cellular biology.

[39]  F. Tamanoi,et al.  Mutation of a termination codon affects src initiation , 1984, Molecular and cellular biology.

[40]  D. Leprince,et al.  A putative second cell-derived oncogene of the avian leukaemia retrovirus E26 , 1983, Nature.

[41]  P. Seeburg,et al.  Tripartite structure of the avian erythroblastosis virus E26 transforming gene , 1983, Nature.

[42]  T. Graf,et al.  Detection of avian hematopoietic cell surface antigens with monoclonal antibodies to myeloid cells. Their distribution on normal and leukemic cells of various lineages. , 1983, Experimental cell research.

[43]  T. Graf,et al.  Characterization of the hematopoietic target cells of AEV, MC29 and AMV avian leukemia viruses. , 1981, Experimental cell research.

[44]  D. Boettiger,et al.  Replicating, differentiated macrophages can serve as in vitro targets for transformation by avian myeloblastosis virus , 1981, Journal of virology.

[45]  M. Komaromy,et al.  Cellular sequences are present in the presumptive avian myeloblastosis virus genome. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Graf Two types of target cells for transformation with avian myelocytomatosis virus. , 1973, Virology.

[47]  J. Bonner,et al.  Differentiation , 1968, Nature.