On the virtual element method for topology optimization on polygonal meshes: A numerical study

It is well known that the solution of topology optimization problems may be affected both by the geometric properties of the computational mesh, which can steer the minimization process towards local (and non-physical) minima, and by the accuracy of the method employed to discretize the underlying differential problem, which may not be able to correctly capture the physics of the problem. In light of the above remarks, in this paper we consider polygonal meshes and employ the virtual element method (VEM) to solve two classes of paradigmatic topology optimization problems, one governed by nearly-incompressible and compressible linear elasticity and the other by Stokes equations. Several numerical results show the virtues of our polygonal VEM based approach with respect to more standard methods.

[1]  Zhenyu Liu,et al.  Topology Optimization Theory for Laminar Flow , 2018 .

[2]  O. Sigmund,et al.  Topology optimization using a mixed formulation: An alternative way to solve pressure load problems , 2007 .

[3]  L. Beirao da Veiga,et al.  A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.

[4]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[5]  Glaucio H. Paulino,et al.  Topology optimization using polytopes , 2013, 1312.7016.

[6]  Francesca Gardini,et al.  Virtual element method for second-order elliptic eigenvalue problems , 2016, 1610.03675.

[7]  Glaucio H. Paulino,et al.  Polygonal finite elements for incompressible fluid flow , 2014 .

[8]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[9]  Julián A. Norato,et al.  Stress-based topology optimization for continua , 2010 .

[10]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[11]  G. Yoon Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation , 2010 .

[12]  Alessandro Russo,et al.  $$H({\text {div}})$$H(div) and $$H(\mathbf{curl})$$H(curl)-conforming virtual element methods , 2016 .

[13]  Ricardo H. Nochetto,et al.  Adaptive finite element method for shape optimization , 2012 .

[14]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[15]  Shaochun Chen,et al.  The nonconforming virtual element method for plate bending problems , 2016 .

[16]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[17]  Gianmarco Manzini,et al.  Recent techniques for PDE discretizations on polyhedral meshes , 2014 .

[18]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[19]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[20]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[21]  Dong-Hoon Choi,et al.  Topology optimization considering static failure theories for ductile and brittle materials , 2012 .

[22]  L. Donatella Marini,et al.  Virtual Element Method for fourth order problems: L2-estimates , 2016, Comput. Math. Appl..

[23]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[24]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[25]  Gianmarco Manzini,et al.  The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..

[26]  Franco Brezzi,et al.  Virtual Element and Discontinuous Galerkin Methods , 2014 .

[27]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[28]  L. Beirao da Veiga,et al.  Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.

[29]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[30]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[31]  L. Beirao da Veiga,et al.  Serendipity Nodal VEM spaces , 2015, 1510.08477.

[32]  Konstantin Lipnikov,et al.  A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..

[33]  Glaucio H. Paulino,et al.  PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes , 2012 .

[34]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[35]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[36]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[37]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[38]  Matteo Bruggi,et al.  Topology optimization of incompressible media using mixed finite elements , 2007 .

[39]  M. Bruggi,et al.  A fully adaptive topology optimization algorithm with goal-oriented error control , 2011 .

[40]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[41]  Matteo Bruggi,et al.  Topology optimization with mixed finite elements on regular grids , 2016 .

[42]  Maurizio Quadrio,et al.  Large eddy simulations of blood dynamics in abdominal aortic aneurysms. , 2017, Medical engineering & physics.

[43]  Giuseppe Vacca,et al.  Virtual Element Methods for hyperbolic problems on polygonal meshes , 2016, Comput. Math. Appl..

[44]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[45]  Lourenço Beirão da Veiga,et al.  Virtual element methods for parabolic problems on polygonal meshes , 2015 .

[46]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[47]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.

[48]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[49]  P. F. Antonietti,et al.  The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.

[50]  Dong-Hoon Choi,et al.  Toward a stress-based topology optimization procedure with indirect calculation of internal finite element information , 2013, Comput. Math. Appl..

[51]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[52]  Matteo Bruggi,et al.  A stress–based approach to the optimal design of structures with unilateral behavior of material or supports , 2013 .

[53]  Lourenço Beirão da Veiga,et al.  H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\text {div}})$$\end{document} and H(curl)\documentclass[12pt] , 2015, Numerische Mathematik.

[54]  David Mora,et al.  A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem , 2016, Comput. Math. Appl..

[55]  Dong-Hoon Choi,et al.  Fatigue and static failure considerations using a topology optimization method , 2015 .

[56]  Stefano Berrone,et al.  Order preserving SUPG stabilization for the Virtual Element formulation of advection-diffusion problems , 2016 .

[57]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[58]  B. Bourdin Filters in topology optimization , 2001 .