Developing Next-generation Brain Sensing Technologies – A Review

Advances in sensing technology raise the possibility of creating neural interfaces that can more effectively restore or repair neural function and reveal fundamental properties of neural information processing. To realize the potential of these bioelectronic devices, it is necessary to understand the capabilities of emerging technologies and identify the best strategies to translate these technologies into products and therapies that will improve the lives of patients with neurological and other disorders. Here, we discuss emerging technologies for sensing brain activity, anticipated challenges for translation, and perspectives for how to best transition these technologies from academic research labs to useful products for neuroscience researchers and human patients.

[1]  L. Trahms,et al.  Magnetoencephalography with a chip-scale atomic magnetometer , 2012, Biomedical optics express.

[2]  John Gardner,et al.  A history of deep brain stimulation: Technological innovation and the role of clinical assessment tools , 2013, Social Studies of Science.

[3]  M. Sarter,et al.  Article Prefrontal Acetylcholine Release Controls Cue Detection on Multiple Timescales , 2022 .

[4]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[5]  Kenneth L. Shepard,et al.  A very large-scale microelectrode array for cellular-resolution electrophysiology , 2017, Nature Communications.

[6]  George G. Malliaras,et al.  Interfacing Electronic and Ionic Charge Transport in Bioelectronics , 2016 .

[7]  Jerald D. Kralik,et al.  Chronic, multisite, multielectrode recordings in macaque monkeys , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Yuste,et al.  The Brain Activity Map Project and the Challenge of Functional Connectomics , 2012, Neuron.

[9]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[10]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[11]  M. Sarter,et al.  Choline-and Acetylcholine-Sensitive Microelectrodes , 2005 .

[12]  J. Kitching,et al.  Chip-scale atomic magnetometer , 2004 .

[13]  Greg A. Gerhardt,et al.  Tonic and phasic release of glutamate and acetylcholine neurotransmission in sub-regions of the rat prefrontal cortex using enzyme-based microelectrode arrays , 2011, Journal of Neuroscience Methods.

[14]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[15]  Gerhard Friehs,et al.  Intra-day signal instabilities affect decoding performance in an intracortical neural interface system , 2013, Journal of neural engineering.

[16]  Eva A Naumann,et al.  Monitoring Neural Activity with Bioluminescence during Natural Behavior , 2010, Nature Neuroscience.

[17]  M. Gather,et al.  Controlling the Behavior of Single Live Cells with High Density Arrays of Microscopic OLEDs , 2015, Advanced materials.

[18]  Jacob T. Robinson,et al.  Magnetoelectric Materials for Miniature, Wireless Neural Stimulation at Therapeutic Frequencies , 2018, Neuron.

[19]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[20]  L. Looger,et al.  Genetically encoded neural activity indicators , 2012, Current Opinion in Neurobiology.

[21]  Jonathan Viventi,et al.  A low-cost, multiplexed electrophysiology system for chronic μECoG recordings in rodents , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[22]  A. Schwartz,et al.  Recording from the same neurons chronically in motor cortex. , 2012, Journal of neurophysiology.

[23]  Rafael Yuste,et al.  Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. , 2017, Nature nanotechnology.

[24]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[25]  Thomas Stieglitz,et al.  Dynamic reconfiguration of cortical functional connectivity across brain states , 2017, Scientific Reports.

[26]  J. Muthuswamy,et al.  Brain micromotion around implants in the rodent somatosensory cortex , 2006, Journal of neural engineering.

[27]  Karl Deisseroth,et al.  Next-generation probes, particles, and proteins for neural interfacing , 2017, Science Advances.

[28]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[29]  Catherine Dehollain,et al.  A 10.5 cm Ultrasound Link for Deep Implanted Medical Devices , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[30]  Benjamin C. Johnson,et al.  StimDust: A 6.5mm3, wireless ultrasonic peripheral nerve stimulator with 82% peak chip efficiency , 2018, 2018 IEEE Custom Integrated Circuits Conference (CICC).

[31]  Caroline Murawski,et al.  The Role of Metallic Dopants in Improving the Thermal Stability of the Electron Transport Layer in Organic Light‐Emitting Diodes , 2018, Advanced Optical Materials.

[32]  Jan M. Rabaey,et al.  Physical principles for scalable neural recording , 2013, Front. Comput. Neurosci..

[33]  Davood Shahrjerdi,et al.  Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. , 2013, Nano letters.

[34]  Amin Arbabian,et al.  A mm-Sized Wireless Implantable Device for Electrical Stimulation of Peripheral Nerves , 2018, IEEE Transactions on Biomedical Circuits and Systems.

[35]  Andrew K. Dunn,et al.  Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic model , 2018, Journal of Neuroscience Methods.

[36]  D. Kipke,et al.  Neural probe design for reduced tissue encapsulation in CNS. , 2007, Biomaterials.

[37]  George G. Malliaras,et al.  Tailoring the Electrochemical and Mechanical Properties of PEDOT:PSS Films for Bioelectronics , 2017 .

[38]  Robert A. Gaunt,et al.  Structural analysis of explanted microelectrode arrays , 2013, 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER).

[39]  Patrick Degenaar,et al.  Multi-site optical excitation using ChR2 and micro-LED array , 2010, Journal of neural engineering.

[40]  Kasey Catt,et al.  Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. , 2015, Biomaterials.

[41]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[42]  Theodore W. Berger,et al.  Chronic multi-region recording from the rat hippocampus in vivo with a flexible Parylene-based multi-electrode array , 2017, 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[43]  M. Ward,et al.  Toward a comparison of microelectrodes for acute and chronic recordings , 2009, Brain Research.

[44]  B. McNaughton,et al.  Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex , 1995, Journal of Neuroscience Methods.

[45]  Warren M Grill,et al.  Implanted neural interfaces: biochallenges and engineered solutions. , 2009, Annual review of biomedical engineering.

[46]  Justin C. Sanchez,et al.  Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants , 2014, Front. Neuroeng..

[47]  B. Eversmann,et al.  A 128 × 128 CMOS bio-sensor array for extracellular recording of neural activity , 2003 .

[48]  X.L. Chen,et al.  Deep Brain Stimulation , 2013, Interventional Neurology.

[49]  R. Bellamkonda,et al.  Biomaterials for the central nervous system , 2008, Journal of The Royal Society Interface.

[50]  Benjamin F. Grewe,et al.  High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor , 2015, Science.

[51]  Victor Pikov,et al.  Bioelectronic medicines: a research roadmap , 2014, Nature Reviews Drug Discovery.

[52]  Jakob Voigts,et al.  Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording , 2017, Journal of neural engineering.

[53]  Zhuolin Xiang,et al.  A flexible three-dimensional electrode mesh: An enabling technology for wireless brain–computer interface prostheses , 2016, Microsystems & Nanoengineering.

[54]  Silvestro Micera,et al.  Six‐Month Assessment of a Hand Prosthesis with Intraneural Tactile Feedback , 2018, Annals of neurology.

[55]  D. Kipke,et al.  Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. , 1999, Brain research. Brain research protocols.

[56]  Suhrud M. Rajguru,et al.  Blood brain barrier (BBB)-disruption in intracortical silicon microelectrode implants. , 2018, Biomaterials.

[57]  T Stieglitz,et al.  Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study. , 2017, Biomaterials.

[58]  J. J. Siegel,et al.  Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration , 2017, Science Advances.

[59]  Caroline Murawski,et al.  High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour , 2016, Scientific Reports.

[60]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[61]  D. Hoffman,et al.  Magnetoencephalography with an atomic magnetometer , 2006 .

[62]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[63]  G. Buzsáki,et al.  NeuroGrid: recording action potentials from the surface of the brain , 2014, Nature Neuroscience.

[64]  Marie T. Alt,et al.  Integrated optoelectronic microprobes , 2018, Current Opinion in Neurobiology.

[65]  Yusuf Leblebici,et al.  Electrical modeling of the cell-electrode interface for recording neural activity from high-density microelectrode arrays , 2009, Neurocomputing.

[66]  Malte C Gather,et al.  Arrays of microscopic organic LEDs for high-resolution optogenetics , 2016, Science Advances.

[67]  Stephen T. Foldes,et al.  Neuroprosthetic technology for individuals with spinal cord injury , 2013, The journal of spinal cord medicine.

[68]  Nitish V. Thakor,et al.  Implantable neurotechnologies: a review of integrated circuit neural amplifiers , 2015, Medical & Biological Engineering & Computing.

[69]  Holly Hedegaard,et al.  Drug Overdose Deaths in the United States, 1999-2018. , 2020, NCHS data brief.

[70]  X Tracy Cui,et al.  Ultrasoft microwire neural electrodes improve chronic tissue integration. , 2017, Acta biomaterialia.

[71]  G. Buzsáki,et al.  Tools for probing local circuits: high-density silicon probes combined with optogenetics , 2015, Neuron.

[72]  T. Stieglitz,et al.  A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. , 2010, Biosensors & bioelectronics.

[73]  Miguel A. L. Nicolelis,et al.  Actions from thoughts , 2001, Nature.

[74]  Niall Holmes,et al.  Moving magnetoencephalography towards real-world applications with a wearable system , 2018, Nature.

[75]  Jacob T. Robinson,et al.  Fluidic Microactuation of Flexible Electrodes for Neural Recording. , 2018, Nano letters.

[76]  Ashok Veeraraghavan,et al.  Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope , 2017, Science Advances.

[77]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[78]  Anna-Maria Pappa,et al.  Lactate Detection in Tumor Cell Cultures Using Organic Transistor Circuits , 2017, Advanced materials.

[79]  Caroline Murawski,et al.  Photostimulation for In Vitro Optogenetics with High‐Power Blue Organic Light‐Emitting Diodes , 2019, Advanced biosystems.

[80]  P. Tresco,et al.  Response of brain tissue to chronically implanted neural electrodes , 2005, Journal of Neuroscience Methods.

[81]  Zhigang Suo,et al.  Syringe-injectable electronics. , 2015, Nature nanotechnology.

[82]  Hideyuki Okano,et al.  Single-cell bioluminescence imaging of deep tissue in freely moving animals , 2018, Science.

[83]  Daryl R. Kipke,et al.  Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings , 2008, Journal of Neuroscience Methods.

[84]  Justin C. Sanchez,et al.  Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants , 2012, Journal of neural engineering.

[85]  N. Melosh,et al.  Dynamic actuation using nano-bio interfaces , 2010 .

[86]  Patrick Ruther,et al.  Let There Be Light—Optoprobes for Neural Implants , 2017, Proceedings of the IEEE.

[87]  Sheng Zhong,et al.  Voltage and Calcium Imaging of Brain Activity. , 2017, Biophysical journal.

[88]  Takao Someya,et al.  The rise of plastic bioelectronics , 2016, Nature.

[89]  Svenja Knappe,et al.  Magnetoencephalography of Epilepsy with a Microfabricated Atomic Magnetrode , 2014, The Journal of Neuroscience.

[90]  Jacob T. Robinson,et al.  Magnetoelectric Materials for Miniature, Wireless Neural Stimulation at Therapeutic Frequencies , 2020, Neuron.

[91]  D. Cohen Magnetoencephalography: Detection of the Brain's Electrical Activity with a Superconducting Magnetometer , 1972, Science.

[92]  Xue Li,et al.  Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes. , 2017, Nano letters.

[93]  Andrew J Shoffstall,et al.  A Mosquito Inspired Strategy to Implant Microprobes into the Brain , 2018, Scientific Reports.

[94]  Tonio Ball,et al.  Closed-loop interaction with the cerebral cortex: a review of wireless implant technology§ , 2017 .

[95]  W. Sorin,et al.  Multiplexed sensing using optical low-coherence reflectometry , 1995, IEEE Photonics Technology Letters.

[96]  Holly Hedegaard,et al.  Drug Overdose Deaths in the United States, 1999-2016. , 2017, NCHS data brief.

[97]  Heping Cheng,et al.  Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice , 2017, Nature Methods.

[98]  Mattias P. Karlsson,et al.  High-Density, Long-Lasting, and Multi-region Electrophysiological Recordings Using Polymer Electrode Arrays , 2019, Neuron.

[99]  Edward S Boyden,et al.  Multiplexed neural recording along a single optical fiber via optical reflectometry , 2015, Journal of biomedical optics.

[100]  F. Mazzei,et al.  Peroxidase based amperometric biosensors for the determination of γ-aminobutyric acid , 1996 .

[101]  I. Underwood,et al.  Active-Matrix GaN Micro Light-Emitting Diode Display With Unprecedented Brightness , 2015, IEEE Transactions on Electron Devices.

[102]  M. Spira,et al.  Multi-electrode array technologies for neuroscience and cardiology. , 2013, Nature nanotechnology.

[103]  Roy H. Hamilton,et al.  An open letter concerning do‐it‐yourself users of transcranial direct current stimulation , 2016, Annals of neurology.

[104]  Luciano Fadiga,et al.  Incorporation of Silicon Carbide and Diamond‐Like Carbon as Adhesion Promoters Improves In Vitro and In Vivo Stability of Thin‐Film Glassy Carbon Electrocorticography Arrays , 2018 .

[105]  Hanlin Zhu,et al.  Nanofabricated Ultraflexible Electrode Arrays for High‐Density Intracortical Recording , 2018, Advanced science.

[106]  K. Mathieson,et al.  Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe , 2016, Scientific Reports.

[107]  R. Normann,et al.  Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex , 1998, Journal of Neuroscience Methods.

[108]  Garrett B Stanley,et al.  The impact of chronic blood-brain barrier breach on intracortical electrode function. , 2013, Biomaterials.

[109]  R. J. Vetter,et al.  Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[110]  Matthew J. Brookes,et al.  A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers , 2017, NeuroImage.

[111]  J. Hetke,et al.  Strength characterization of silicon microprobes in neurophysiological tissues , 1990, IEEE Transactions on Biomedical Engineering.

[112]  R. Oostenveld,et al.  A MEMS-based flexible multichannel ECoG-electrode array , 2009, Journal of neural engineering.

[113]  Kinam Park,et al.  Histological evaluation of flexible neural implants; flexibility limit for reducing the tissue response? , 2017, Journal of neural engineering.

[114]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[115]  Stuart N. Baker,et al.  Newcastle University Eprints Date Deposited: 23 the Sinusoidal Probe: a New Approach to Improve Electrode Longevity , 2022 .

[116]  Luca Citi,et al.  Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses , 2014, Science Translational Medicine.

[117]  Daryl R. Kipke,et al.  Fabrication of Polymer Neural Probes with Sub-cellular Features for Reduced Tissue Encapsulation , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[118]  Aswin C. Sankaranarayanan,et al.  Lensless Imaging: A computational renaissance , 2016, IEEE Signal Processing Magazine.

[119]  Vanessa M. Tolosa,et al.  Insertion of flexible neural probes using rigid stiffeners attached with biodissolvable adhesive. , 2013, Journal of visualized experiments : JoVE.

[120]  P. Leleux,et al.  In vivo recordings of brain activity using organic transistors , 2013, Nature Communications.

[121]  T. Douglas,et al.  Do-it-yourself brain stimulation: a regulatory model , 2013, Journal of Medical Ethics.

[122]  Ashok Veeraraghavan,et al.  Deep imaging in scattering media with selective plane illumination microscopy , 2016, Journal of biomedical optics.

[123]  W. Happer,et al.  Spin-Exchange Shift and Narrowing of Magnetic Resonance Lines in Optically Pumped Alkali Vapors , 1973 .

[124]  Martin Wolf,et al.  A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology , 2014, NeuroImage.

[125]  Helen Shen Neurotechnology: BRAIN storm , 2013, Nature.

[126]  Thomas Stieglitz,et al.  Thin films and microelectrode arrays for neuroprosthetics , 2012 .

[127]  Anna Wexler The practices of do-it-yourself brain stimulation: implications for ethical considerations and regulatory proposals , 2015, Journal of Medical Ethics.

[128]  Jae-Woong Jeong,et al.  Soft Materials in Neuroengineering for Hard Problems in Neuroscience , 2015, Neuron.

[129]  J. Diels,et al.  Subpicosecond-time-domain reflectometry. , 1981, Optics Letters.

[130]  Tao Zhou,et al.  Syringe-injectable Mesh Electronics for Stable Chronic Rodent Electrophysiology , 2018, Journal of visualized experiments : JoVE.