An aggregate contextual choice model for estimating demand for new products from a laboratory choice experiment

Abstract An aggregate contextual choice model (ACCM) is presented and 2 alternative error theories are developed that lead to multinomial maximum likelihood and least-squares estimation procedures. The model is used to estimate demand for 2 new product concepts in a reduced design laboratory choice experiment. The results of the comparison between the ACCM and the Luce constant utility model strongly favor the context-sensitive model over the Luce model. Furthermore, it is shown that the context-sensitive model is easily transformed so that the least-squares method produces results that are very close to maximum likelihood estimates.

[1]  Geert De Soete,et al.  The Wandering Ideal Point Model: A Probabilistic Multidimensional Unfolding Model for Paired Comparisons Data , 1986 .

[2]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[3]  D. McFadden ON INDEPENDENCE, STRUCTURE, AND SIMULTANEITY IN TRANSPORTATION DEMAND ANALYSIS , 1975 .

[4]  D. Wise,et al.  A CONDITIONAL PROBIT MODEL FOR QUALITATIVE CHOICE: DISCRETE DECISIONS RECOGNIZING INTERDEPENDENCE AND HETEROGENEOUS PREFERENCES' , 1978 .

[5]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[6]  Geert De Soete,et al.  A maximum likelihood method for fitting the wandering vector model , 1983 .

[7]  Jordan J. Louviere,et al.  Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data , 1983 .

[8]  D. McFadden MEASUREMENT OF URBAN TRAVEL DEMAND , 1974 .

[9]  Richard R. Batsell,et al.  A Monté Carlo Comparison of Estimators for the Multinomial Logit Model , 1989 .

[10]  Lee G. Cooper,et al.  Parameter Estimation for a Multiplicative Competitive Interaction Model—Least Squares Approach , 1974 .

[11]  M GayDavid,et al.  Algorithm 611: Subroutines for Unconstrained Minimization Using a Model/Trust-Region Approach , 1983 .

[12]  J. Atchison,et al.  Logistic-normal distributions:Some properties and uses , 1980 .

[13]  Lee G. Cooper,et al.  Standardizing Variables in Multiplicative Choice Models , 1983 .

[14]  Lee G. Cooper,et al.  Technical Note---Simplified Estimation Procedures for MCI Models , 1982 .

[15]  Richard R. Batsell,et al.  A New Class of Market Share Models , 1985 .

[16]  Moshe Ben-Akiva,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1985 .

[17]  Jordan J. Louviere,et al.  Integrating Conjoint and Functional Measurement With Discrete Choice Theory: an Experimental Design Approach , 1983 .

[18]  L. Thurstone A law of comparative judgment. , 1994 .

[19]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[20]  A. Tversky Elimination by aspects: A theory of choice. , 1972 .

[21]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[22]  D. McFadden Econometric Models of Probabilistic Choice , 1981 .

[23]  Wayne S. DeSarbo,et al.  A Probabilistic Multidimensional Scaling Vector Model , 1986 .

[24]  Dipak C. Jain,et al.  Effect of choice set size on choice probabilities: An extended logit model , 1989 .

[25]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[26]  Patrick Suppes,et al.  Foundations of Measurement, Vol. II: Geometrical, Threshold, and Probabilistic Representations , 1989 .

[27]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[28]  Jordan J. Louviere,et al.  Analyzing Decision Making: Metric Conjoint Analysis , 1988 .

[29]  Lyle V. Jones,et al.  The Measurement and Prediction of Judgement and Choice , 1971 .