Backward difference time discretization of parabolic differential equations on evolving surfaces

A linear parabolic differential equation on a moving surface is discretized in space by evolving surface finite elements and in time by backward difference formulas (BDF). Using results from Dahlquist's G-stability theory and Nevanlinna & Odeh's multiplier technique together with properties of the spatial semi-discretization, stability of the full discretization is proven for the BDF methods up to order 5 and optimal-order convergence is shown. Numerical experiments illustrate the behaviour of the fully discrete method.