Supervised semantic labeling of places using information extracted from sensor data

Indoor environments can typically be divided into places with different functionalities like corridors, rooms or doorways. The ability to learn such semantic categories from sensor data enables a mobile robot to extend the representation of the environment facilitating interaction with humans. As an example, natural language terms like ''corridor'' or ''room'' can be used to communicate the position of the robot in a map in a more intuitive way. In this work, we first propose an approach based on supervised learning to classify the pose of a mobile robot into semantic classes. Our method uses AdaBoost to boost simple features extracted from sensor range data into a strong classifier. We present two main applications of this approach. Firstly, we show how our approach can be utilized by a moving robot for an online classification of the poses traversed along its path using a hidden Markov model. In this case we additionally use as features objects extracted from images. Secondly, we introduce an approach to learn topological maps from geometric maps by applying our semantic classification procedure in combination with a probabilistic relaxation method. Alternatively, we apply associative Markov networks to classify geometric maps and compare the results with a relaxation approach. Experimental results obtained in simulation and with real robots demonstrate the effectiveness of our approach in various indoor environments.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Henrik I. Christensen,et al.  Behaviour Coordination in Structured Environments , 2022 .

[3]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[4]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[5]  Hiromichi Yamamoto A method of deriving compatibility coefficients for relaxation operators , 1979 .

[6]  Roland Siegwart,et al.  Incremental robot mapping with fingerprints of places , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  John C. Russ,et al.  The Image Processing Handbook , 2016, Microscopy and Microanalysis.

[8]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[9]  Robin R. Murphy,et al.  Artificial intelligence and mobile robots: case studies of successful robot systems , 1998 .

[10]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[11]  Wolfram Burgard,et al.  Robust 3D scan point classification using associative Markov networks , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[12]  Sebastian Thrun,et al.  Detecting and modeling doors with mobile robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[13]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[14]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[15]  Sudha Ram,et al.  Proceedings of the 1997 ACM SIGMOD international conference on Management of data , 1997, ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.

[16]  Ben Taskar,et al.  Discriminative Probabilistic Models for Relational Data , 2002, UAI.

[17]  Ben J. A. Kröse,et al.  Hierarchical map building using visual landmarks and geometric constraints , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Paul Wintz,et al.  Instructor's manual for digital image processing , 1987 .

[19]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[20]  Benjamin Kuipers,et al.  Towards Autonomous Topological Place Detection Using the Extended Voronoi Graph , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[21]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[22]  Rainer Lienhart,et al.  Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection , 2003, DAGM-Symposium.

[23]  Leslie Pack Kaelbling,et al.  Learning Topological Maps with Weak Local Odometric Information , 1997, IJCAI.

[24]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[25]  Alessandro Saffiotti,et al.  A virtual sensor for room detection , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Wolfram Burgard,et al.  Semantic Place Classification of Indoor Environments with Mobile Robots Using Boosting , 2005, AAAI.

[27]  Sebastian Thrun,et al.  Perspectives on standardization in mobile robot programming: the Carnegie Mellon Navigation (CARMEN) Toolkit , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[28]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[29]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[30]  Wolfram Burgard,et al.  Supervised Learning of Topological Maps using Semantic Information Extracted from Range Data , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Y. Freund,et al.  Discussion of the Paper \additive Logistic Regression: a Statistical View of Boosting" By , 2000 .

[32]  Piotr Indyk,et al.  Enhanced hypertext categorization using hyperlinks , 1998, SIGMOD '98.

[33]  Joseph O'Rourke,et al.  Computational geometry in C (2nd ed.) , 1998 .

[34]  Sebastian Thrun,et al.  Learning Hierarchical Object Maps of Non-Stationary Environments with Mobile Robots , 2002, UAI.

[35]  Dieter Fox,et al.  Relational Object Maps for Mobile Robots , 2005, IJCAI.

[36]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[37]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[38]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[39]  Antonio Torralba,et al.  Context-based vision system for place and object recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[40]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[41]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[42]  Wolfram Burgard,et al.  Supervised Learning of Places from Range Data using AdaBoost , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[43]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.