Complete hierarchies of efficient approximations to problems in entanglement theory

We investigate several problems in entanglement theory from the perspective of convex optimization. This list of problems comprises (A) the decision whether a state is multi-party entangled, (B) the minimization of expectation values of entanglement witnesses with respect to pure product states, (C) the closely related evaluation of the geometric measure of entanglement to quantify pure multi-party entanglement, (D) the test whether states are multi-party entangled on the basis of witnesses based on second moments and on the basis of linear entropic criteria, and (E) the evaluation of instances of maximal output purities of quantum channels. We show that these problems can be formulated as certain optimization problems: as polynomially constrained problems employing polynomials of degree three or less. We then apply very recently established known methods from the theory of semi-definite relaxations to the formulated optimization problems. By this construction we arrive at a hierarchy of efficiently solvable approximations to the solution, approximating the exact solution as closely as desired, in a way that is asymptotically complete. For example, this results in a hierarchy of novel, efficiently decidable sufficient criteria for multi-particle entanglement, such that every entangled state will necessarily be detected in some step of the hierarchy. Finally, we present numerical examples to demonstrate the practical accessibility of this approach.

[1]  D. Jaksch,et al.  Multipartite entanglement detection in bosons. , 2004, Physical review letters.

[2]  O. Gühne Characterizing entanglement via uncertainty relations. , 2003, Physical review letters.

[3]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[4]  A. J. Scott Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions , 2003, quant-ph/0310137.

[5]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[6]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[7]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[8]  B. M. Fulk MATH , 1992 .

[9]  D. Bruss,et al.  Separability and distillability in composite quantum systems-a primer , 2000 .

[10]  B. De Moor,et al.  Optimizing completely positive maps using semidefinite programming , 2002 .

[11]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[12]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[13]  J. Fiurášek,et al.  Finding optimal strategies for minimum-error quantum-state discrimination , 2002, quant-ph/0201109.

[14]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[15]  K. Audenaert,et al.  Entanglement cost under positive-partial-transpose-preserving operations. , 2003, Physical review letters.

[16]  F. Verstraete,et al.  Optimal teleportation with a mixed state of two qubits. , 2003, Physical review letters.

[17]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[18]  J. Lasserre,et al.  Solving nonconvex optimization problems , 2004, IEEE Control Systems.

[19]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[20]  H. Hofmann,et al.  Violation of local uncertainty relations as a signature of entanglement , 2002, quant-ph/0212090.

[21]  G. Kimura The Bloch Vector for N-Level Systems , 2003, quant-ph/0301152.

[22]  Oliver Rudolph A separability criterion for density operators , 2000, quant-ph/0002026.

[23]  Sunyoung Kim,et al.  A General Framework for Convex Relaxation of Polynomial Optimization Problems over Cones , 2003 .

[24]  A. Shimony Degree of Entanglement a , 1995 .

[25]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[26]  Barbara M. Terhal Detecting quantum entanglement , 2002, Theor. Comput. Sci..

[27]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[28]  Masakazu Kojima,et al.  Discretization and localization in successive convex relaxation methods for nonconvex quadratic optimization , 2000, Math. Program..

[29]  Geza Toth Entanglement detection in optical lattices of bosonic atoms with collective measurements , 2003 .

[30]  M. Barbieri,et al.  Detection of entanglement with polarized photons: experimental realization of an entanglement witness. , 2003, Physical review letters.

[31]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[32]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[33]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[34]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[35]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[36]  J. Ignacio Cirac,et al.  On the structure of a reversible entanglement generating set for tripartite states , 2003, Quantum Inf. Comput..

[37]  Chiara Macchiavello,et al.  Generation and detection of bound entanglement , 2004 .

[38]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[39]  Yonina C. Eldar,et al.  Optimal quantum detectors for unambiguous detection of mixed states (9 pages) , 2003, quant-ph/0312061.

[40]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[41]  Gerardo Adesso,et al.  Characterizing entanglement with global and marginal entropic measures (6 pages) , 2003 .

[42]  S. Woronowicz Positive maps of low dimensional matrix algebras , 1976 .

[43]  D. Meyer,et al.  Global entanglement in multiparticle systems , 2001, quant-ph/0108104.

[44]  Horodecki Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[45]  Akiko Takeda,et al.  Parallel Implementation of Successive Convex Relaxation Methods for Quadratic Optimization Problems , 2002, J. Glob. Optim..

[46]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[47]  Norbert Lütkenhaus,et al.  Entanglement as a precondition for secure quantum key distribution. , 2004, Physical review letters.

[48]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[49]  M. B. Plenio,et al.  Tripartite entanglement and quantum relative entropy , 2000 .

[50]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[51]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[52]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[53]  M. Wolf,et al.  Conditional entropies and their relation to entanglement criteria , 2002, quant-ph/0202058.

[54]  N. Khaneja,et al.  Characterization of the Positivity of the Density Matrix in Terms of the Coherence Vector Representation , 2003, quant-ph/0302024.

[55]  M. Horodecki,et al.  Quantum α-entropy inequalities: independent condition for local realism? , 1996 .

[56]  K. Audenaert,et al.  Asymptotic relative entropy of entanglement. , 2001, Physical review letters.

[57]  J. Eisert,et al.  Schmidt measure as a tool for quantifying multiparticle entanglement , 2000, quant-ph/0007081.

[58]  Shengjun Wu,et al.  Multipartite pure-state entanglement and the generalized Greenberger-Horne-Zeilinger states , 2000 .

[59]  Ling-An Wu,et al.  Test for entanglement using physically observable witness operators and positive maps , 2003, quant-ph/0306041.

[60]  H. Barnum,et al.  Monotones and invariants for multi-particle quantum states , 2001, quant-ph/0103155.

[61]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[62]  J. Cirac,et al.  Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.

[63]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[64]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.