Complete hierarchies of efficient approximations to problems in entanglement theory
暂无分享,去创建一个
[1] D. Jaksch,et al. Multipartite entanglement detection in bosons. , 2004, Physical review letters.
[2] O. Gühne. Characterizing entanglement via uncertainty relations. , 2003, Physical review letters.
[3] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[4] A. J. Scott. Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions , 2003, quant-ph/0310137.
[5] Ericka Stricklin-Parker,et al. Ann , 2005 .
[6] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[7] Eric M. Rains. A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.
[8] B. M. Fulk. MATH , 1992 .
[9] D. Bruss,et al. Separability and distillability in composite quantum systems-a primer , 2000 .
[10] B. De Moor,et al. Optimizing completely positive maps using semidefinite programming , 2002 .
[11] M. Horodecki,et al. Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.
[12] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[13] J. Fiurášek,et al. Finding optimal strategies for minimum-error quantum-state discrimination , 2002, quant-ph/0201109.
[14] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[15] K. Audenaert,et al. Entanglement cost under positive-partial-transpose-preserving operations. , 2003, Physical review letters.
[16] F. Verstraete,et al. Optimal teleportation with a mixed state of two qubits. , 2003, Physical review letters.
[17] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[18] J. Lasserre,et al. Solving nonconvex optimization problems , 2004, IEEE Control Systems.
[19] P. Goldbart,et al. Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.
[20] H. Hofmann,et al. Violation of local uncertainty relations as a signature of entanglement , 2002, quant-ph/0212090.
[21] G. Kimura. The Bloch Vector for N-Level Systems , 2003, quant-ph/0301152.
[22] Oliver Rudolph. A separability criterion for density operators , 2000, quant-ph/0002026.
[23] Sunyoung Kim,et al. A General Framework for Convex Relaxation of Polynomial Optimization Problems over Cones , 2003 .
[24] A. Shimony. Degree of Entanglement a , 1995 .
[25] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[26] Barbara M. Terhal. Detecting quantum entanglement , 2002, Theor. Comput. Sci..
[27] J. Cirac,et al. Optimization of entanglement witnesses , 2000, quant-ph/0005014.
[28] Masakazu Kojima,et al. Discretization and localization in successive convex relaxation methods for nonconvex quadratic optimization , 2000, Math. Program..
[29] Geza Toth. Entanglement detection in optical lattices of bosonic atoms with collective measurements , 2003 .
[30] M. Barbieri,et al. Detection of entanglement with polarized photons: experimental realization of an entanglement witness. , 2003, Physical review letters.
[31] K. B. Whaley,et al. Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.
[32] Cirac,et al. Inseparability criterion for continuous variable systems , 1999, Physical review letters.
[33] B. Terhal. Bell inequalities and the separability criterion , 1999, quant-ph/9911057.
[34] Warren P. Adams,et al. A hierarchy of relaxation between the continuous and convex hull representations , 1990 .
[35] Charles H. Bennett,et al. Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.
[36] J. Ignacio Cirac,et al. On the structure of a reversible entanglement generating set for tripartite states , 2003, Quantum Inf. Comput..
[37] Chiara Macchiavello,et al. Generation and detection of bound entanglement , 2004 .
[38] J. Eisert,et al. Multiparty entanglement in graph states , 2003, quant-ph/0307130.
[39] Yonina C. Eldar,et al. Optimal quantum detectors for unambiguous detection of mixed states (9 pages) , 2003, quant-ph/0312061.
[40] Didier Henrion,et al. GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.
[41] Gerardo Adesso,et al. Characterizing entanglement with global and marginal entropic measures (6 pages) , 2003 .
[42] S. Woronowicz. Positive maps of low dimensional matrix algebras , 1976 .
[43] D. Meyer,et al. Global entanglement in multiparticle systems , 2001, quant-ph/0108104.
[44] Horodecki. Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[45] Akiko Takeda,et al. Parallel Implementation of Successive Convex Relaxation Methods for Quadratic Optimization Problems , 2002, J. Glob. Optim..
[46] P. Parrilo,et al. Distinguishing separable and entangled states. , 2001, Physical review letters.
[47] Norbert Lütkenhaus,et al. Entanglement as a precondition for secure quantum key distribution. , 2004, Physical review letters.
[48] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[49] M. B. Plenio,et al. Tripartite entanglement and quantum relative entropy , 2000 .
[50] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .
[51] W. Wootters,et al. Distributed Entanglement , 1999, quant-ph/9907047.
[52] P. Parrilo,et al. Complete family of separability criteria , 2003, quant-ph/0308032.
[53] M. Wolf,et al. Conditional entropies and their relation to entanglement criteria , 2002, quant-ph/0202058.
[54] N. Khaneja,et al. Characterization of the Positivity of the Density Matrix in Terms of the Coherence Vector Representation , 2003, quant-ph/0302024.
[55] M. Horodecki,et al. Quantum α-entropy inequalities: independent condition for local realism? , 1996 .
[56] K. Audenaert,et al. Asymptotic relative entropy of entanglement. , 2001, Physical review letters.
[57] J. Eisert,et al. Schmidt measure as a tool for quantifying multiparticle entanglement , 2000, quant-ph/0007081.
[58] Shengjun Wu,et al. Multipartite pure-state entanglement and the generalized Greenberger-Horne-Zeilinger states , 2000 .
[59] Ling-An Wu,et al. Test for entanglement using physically observable witness operators and positive maps , 2003, quant-ph/0306041.
[60] H. Barnum,et al. Monotones and invariants for multi-particle quantum states , 2001, quant-ph/0103155.
[61] Christian Kurtsiefer,et al. Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.
[62] J. Cirac,et al. Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.
[63] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[64] B. Moor,et al. Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.