An iterative learning scheme for motion control of robots using neural networks: A case study

In this paper, an iterative learning controller using neural networks has been studied for the motion control of robotic manipulators. Simulations of a two-link robot have demonstrated that the proposed control scheme for robotic manipulators can greatly reduce tracking errors after a few trials. Our modification of the original back-propagation algorithm is employed in the neural network, resulting in a much faster learning rate. The results of simulation have also shown that the proposed iterative learning controller has a faster rate of convergence and better robustness.