Vital Signs: Seismology of ocean worlds

Ice-covered ocean worlds possess diverse energy sources and associated mechanisms that are capable of driving significant seismic activity, but to date no measurements of their seismic activity have been obtained. Such investigations could probe their transport properties and radial structures, with possibilities for locating and characterizing trapped liquids that may host life and yielding critical constraints on redox fluxes, and thus on habitability. Modeling efforts have examined seismic sources from tectonic fracturing and impacts. Here, we describe other possible seismic sources, their associations with science questions constraining habitability, and the feasibility of implementing such investigations. We argue, by analogy with the Moon, that detectable seismic activity on tidally flexed ocean worlds should occur frequently. Their ices fracture more easily than rocks, and dissipate more tidal energy than the <1 GW of the Moon and Mars. Icy ocean worlds also should create less thermal noise for a due to their greater distance and consequently smaller diurnal temperature variations. They also lack substantial atmospheres (except in the case of Titan) that would create additional noise. Thus, seismic experiments could be less complex and less susceptible to noise than prior or planned planetary seismology investigations of the Moon or Mars.

[1]  R. Lorenz,et al.  The seismic noise environment of Europa , 2017 .

[2]  T. Nissen‐Meyer,et al.  Seismic Wave Propagation in Icy Ocean Worlds , 2017, 1705.03500.

[3]  Susana E. Deustua,et al.  Active Cryovolcanism on Europa? , 2017, 1704.04283.

[4]  N. Teanby,et al.  Europa’s small impactor flux and seismic detection predictions , 2016 .

[5]  E. Bergeron,et al.  PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS , 2016, 1609.08215.

[6]  David A. Williams,et al.  Cryovolcanism on Ceres , 2016, Science.

[7]  L. Rolland,et al.  Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives. , 2016, The Journal of the Acoustical Society of America.

[8]  M. Beuthe Crustal control of dissipative ocean tides in Enceladus and other icy moons , 2016, 1608.08488.

[9]  Robert T. Pappalardo,et al.  Ocean worlds in the outer solar system , 2016 .

[10]  Jean-Paul Ampuero,et al.  Seismic moulin tremor , 2016 .

[11]  Alyssa Rhoden,et al.  Tidal disruption of Phobos as the cause of surface fractures , 2016 .

[12]  R. Cooper,et al.  Tidal dissipation in creeping ice and the thermal evolution of Europa , 2016 .

[13]  W. McKinnon,et al.  Mountain building on Io driven by deep faulting , 2016 .

[14]  K. Hand,et al.  Geophysical controls of chemical disequilibria in Europa , 2016 .

[15]  J. Walter,et al.  Subseasonal changes observed in subglacial channel pressure, size, and sediment transport , 2016 .

[16]  G. Jones Akon - A Penetrator for Europa , 2016 .

[17]  A. Rubin,et al.  Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes , 2016, Proceedings of the National Academy of Sciences.

[18]  T. Lauer,et al.  The geology of Pluto and Charon through the eyes of New Horizons , 2016, Science.

[19]  T. Lauer,et al.  Mean radius and shape of Pluto and Charon from New Horizons images , 2016, 1603.00821.

[20]  I. Matsuyama,et al.  Pluto Followed Its Heart: True Polar Wander of Pluto Due to the Formation and Evolution of Sputnik Planum , 2016 .

[21]  J. Goodman Snow, Slush, or Solid? Latent Heat Transfer Through Porous High-Pressure Ice Layers in Icy Satellites and Other Water Worlds , 2016 .

[22]  R. Treuhaft,et al.  Prospects of passive radio detection of a subsurface ocean on Europa with a lander , 2016, 1602.06016.

[23]  M. Okutsu,et al.  Impactor Missions to Europa and Ganymede: Seismic Approach for Estimating Icy Crust Thickness , 2016 .

[24]  M. Manga,et al.  Geometry and spatial distribution of lenticulae on Europa , 2015 .

[25]  Jacob I. Walter,et al.  Subglacial discharge at tidewater glaciers revealed by seismic tremor , 2015, Geophysical research letters.

[26]  J. Waite,et al.  Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets) , 2015, Astrobiology.

[27]  Shunichi Kamata,et al.  Tidal resonance in icy satellites with subsurface oceans , 2015 .

[28]  W. McKinnon Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity , 2015 .

[29]  A. Ganse,et al.  Inverse Theory for Planning Gravity Investigations of Icy Moons , 2015 .

[30]  Fabrice Ardhuin,et al.  How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s , 2015 .

[31]  Britney E. Schmidt,et al.  Ice collapse over trapped water bodies on Enceladus and Europa , 2015 .

[32]  R. Tyler Comparative estimates of the heat generated by ocean tides on icy satellites in the outer Solar System , 2014 .

[33]  Huafeng Liu,et al.  A self-levelling nano-g silicon seismometer , 2014, IEEE SENSORS 2014 Proceedings.

[34]  I. Matsuyama Tidal dissipation in the oceans of icy satellites , 2014 .

[35]  L. Prockter,et al.  Evidence for subduction in the ice shell of Europa , 2014 .

[36]  M. Lamb,et al.  A physical model for seismic noise generation by turbulent flow in rivers , 2014 .

[37]  Christophe Sotin,et al.  Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice , 2014 .

[38]  K. Liewer,et al.  A passive probe for subsurface oceans and liquid water in Jupiter’s icy moons , 2014, 1404.1876.

[39]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[40]  G. Collins,et al.  Tectonic activity on Pluto after the Charon-forming impact , 2014, 1403.6377.

[41]  F. Nimmo,et al.  Powering Triton's recent geological activity by obliquity tides: Implications for Pluto geology , 2014 .

[42]  G. Tobie,et al.  Ice melting and downward transport of meltwater by two‐phase flow in Europa's ice shell , 2014 .

[43]  G. Glatzmaier,et al.  Tidal heating in icy satellite oceans , 2014 .

[44]  Paul D. Feldman,et al.  Transient Water Vapor at Europa’s South Pole , 2014, Science.

[45]  Suzanne E. Smrekar,et al.  Lunar heat flow: Regional prospective of the Apollo landing sites , 2014 .

[46]  Z. Zhan,et al.  Ambient noise correlation on the Amery Ice Shelf, East Antarctica , 2013 .

[47]  A. Barr,et al.  Formation of Ganymede's grooved terrain by convection-driven resurfacing , 2013 .

[48]  M. Manga,et al.  Domes, pits, and small chaos on Europa produced by water sills , 2013 .

[49]  F. Nimmo,et al.  Dissipation at tidal and seismic frequencies in a melt‐free, anhydrous Mars , 2013 .

[50]  David J. Stevenson,et al.  Nonhydrostatic effects and the determination of icy satellites' moment of inertia , 2013, 1309.1205.

[51]  M. Mellon,et al.  Science potential from a Europa lander. , 2013, Astrobiology.

[52]  R. H. Brown,et al.  An observed correlation between plume activity and tidal stresses on Enceladus , 2013, Nature.

[53]  John R. Spencer,et al.  Enceladus: An Active Ice World in the Saturn System , 2013 .

[54]  Jennifer M. Brown,et al.  Thermodynamic properties of aqueous MgSO 4 to 800 MPa at temperatures from 20 to 100 C and concentrations to 2.5 mol kg 1 from sound speeds, with applications to icy world oceans , 2013 .

[55]  P. Drossart,et al.  JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system , 2013 .

[56]  F. Ardhuin,et al.  Modelling secondary microseismic noise by normal mode summation , 2013 .

[57]  S. Asmar,et al.  The Tides of Titan , 2012, Science.

[58]  L. Prockter,et al.  Characterizing electron bombardment of Europa’s surface by location and depth , 2012 .

[59]  C. Johnson,et al.  Investigation of scattering in lunar seismic coda , 2012 .

[60]  A. Hayes,et al.  The growth of wind-waves in Titan’s hydrocarbon seas , 2012 .

[61]  R. Lorenz Planetary seismology—Expectations for lander and wind noise with application to Venus , 2012 .

[62]  Richard Greenberg,et al.  Acidification of Europa's subsurface ocean as a consequence of oxidant delivery. , 2012, Astrobiology.

[63]  Francis Nimmo,et al.  Thermal evolution of Pluto and implications for surface tectonics and a subsurface ocean , 2011 .

[64]  G. W. Patterson,et al.  Active formation of ‘chaos terrain’ over shallow subsurface water on Europa , 2011, Nature.

[65]  R. Jaumann,et al.  Concept Study for a Titan Geophysical Network , 2011 .

[66]  Sharon Kedar,et al.  Source distribution of ocean microseisms and implications for time-dependent noise tomography , 2011 .

[67]  J. B. Dalton,et al.  Methods and measurements to assess physical and geochemical conditions at the surface of Europa , 2011 .

[68]  L. Gurvits,et al.  Penetrators for in situ subsurface investigations of Europa , 2011 .

[69]  P. Kuchynka,et al.  Constraining Ceres’ interior from its rotational motion , 2011, 1107.2051.

[70]  M. Efroimsky TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS , 2011, 1105.3936.

[71]  J. Spencer,et al.  Galileo PPR observations of Europa: Hotspot detection limits and surface thermal properties , 2010 .

[72]  M. Manga,et al.  Shell tectonics: A mechanical model for strike-slip displacement on Europa , 2010 .

[73]  E. Wielandt,et al.  Magnetic field background variations can limit the resolution of seismic broad-band sensors , 2010 .

[74]  J. Oberst,et al.  Measuring tidal deformations at Europa’s surface , 2010 .

[75]  Cheryl Reed,et al.  NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update , 2010 .

[76]  Richard Greenberg Transport rates of radiolytic substances into Europa's ocean: implications for the potential origin and maintenance of life. , 2010, Astrobiology.

[77]  J. Pearl,et al.  Thermal inertia and bolometric Bond albedo values for Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus as derived from Cassini/CIRS measurements , 2010 .

[78]  D. Sandwell,et al.  The Global Seamount Census , 2010 .

[79]  C. Johnson,et al.  Moon meteoritic seismic hum: Steady state prediction , 2009 .

[80]  É. Stutzmann,et al.  Global climate imprint on seismic noise , 2009 .

[81]  J. Cooper,et al.  Old Faithful Model for Radiolytic Gas-Driven Cryovolcanism at Enceladus , 2009 .

[82]  Takashi Nakagawa,et al.  Size and compositional constraints of Ganymede's metallic core for driving an active dynamo , 2009 .

[83]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[84]  W.T. Pike,et al.  Design, fabrication and testing of a micromachined seismometer with NANO-G resolution , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[85]  C. Frohlich,et al.  The physical mechanisms of deep moonquakes and intermediate-depth earthquakes: How similar and how different? , 2009 .

[86]  Michael T. Bland,et al.  The orbital–thermal evolution and global expansion of Ganymede , 2009 .

[87]  R. Tyler Strong ocean tidal flow and heating on moons of the outer planets , 2008, Nature.

[88]  C. Johnson,et al.  Constraints on deep moonquake focal mechanisms through analyses of tidal stress , 2008 .

[89]  G. Tobie,et al.  The production of Ganymede's magnetic field , 2008 .

[90]  P. Grindrod,et al.  The long-term stability of a possible aqueous ammonium sulfate ocean inside Titan , 2008 .

[91]  Randolph L. Kirk,et al.  Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith , 2008 .

[92]  J. H. Roberts,et al.  Near‐surface heating on Enceladus and the south polar thermal anomaly , 2008 .

[93]  N. Brilliantov,et al.  Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures , 2008, Nature.

[94]  F. Waldhauser,et al.  Seismic identification of along-axis hydrothermal flow on the East Pacific Rise , 2008, Nature.

[95]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[96]  Sharon Kedar,et al.  The origin of deep ocean microseisms in the North Atlantic Ocean , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[97]  P. Thomas,et al.  The global shape of Europa: Constraints on lateral shell thickness variations , 2007 .

[98]  C. Sotin,et al.  Mass–radius curve for extrasolar Earth-like planets and ocean planets , 2007 .

[99]  S. Alan Stern,et al.  The New Horizons Pluto Kuiper Belt Mission: An Overview with Historical Context , 2007, 0709.4417.

[100]  R. T. Pappalardo,et al.  Shear heating as the origin of the plumes and heat flux on Enceladus , 2007, Nature.

[101]  Peter Grindrod,et al.  Ammonium sulfate on Titan: Possible origin and role in cryovolcanism , 2007 .

[102]  J. Head,et al.  A GLOBAL GEOLOGIC MAP OF GANYMEDE , 2007 .

[103]  S. Webb The Earth’s ‘hum’ is driven by ocean waves over the continental shelves , 2007, Nature.

[104]  Ralph D. Lorenz,et al.  Hydrocarbon lakes on Titan , 2007 .

[105]  B. Romanowicz,et al.  Long-period seismology on Europa: 2. Predicted seismic response , 2006 .

[106]  B. Romanowicz,et al.  Long‐period seismology on Europa: 1. Physically consistent interior models , 2006 .

[107]  A. Showman,et al.  Thermal convection in ice-I shells of Titan and Enceladus , 2006 .

[108]  D. W. Parcher,et al.  The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data , 2006 .

[109]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[110]  W. McKinnon On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto , 2006 .

[111]  Douglas P. Hamilton,et al.  Neptune's capture of its moon Triton in a binary–planet gravitational encounter , 2006, Nature.

[112]  M. Wieczorek,et al.  Lateral variations of lunar crustal thickness from the Apollo seismic data set , 2006 .

[113]  Nicholas C. Makris,et al.  Mechanics of tidally driven fractures in Europa's ice shell , 2005 .

[114]  C. Sotin,et al.  Episodic outgassing as the origin of atmospheric methane on Titan , 2005, Nature.

[115]  R. Pappalardo,et al.  A shear heating origin for ridges on Triton , 2005 .

[116]  T. Spohn,et al.  Thermal-orbital evolution of Io and Europa , 2004 .

[117]  Gabriel Tobie,et al.  Tidally heated convection: Constraints on Europa's ice shell thickness , 2003 .

[118]  Nicholas C. Makris,et al.  Probing Europa's interior with natural sound sources , 2003 .

[119]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[120]  Klaus Mosegaard,et al.  An inquiry into the lunar interior: A nonlinear inversion of the Apollo lunar seismic data , 2002 .

[121]  Gabriel Tobie,et al.  Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting , 2002 .

[122]  E. Gaidos,et al.  Strike‐slip motion and double ridge formation on Europa , 2002 .

[123]  J. T. Ratcliff,et al.  Lunar rotational dissipation in solid body and molten core , 2001 .

[124]  P. Lognonné,et al.  First seismic receiver functions on the Moon , 2001 .

[125]  Robert L. Kovach,et al.  Seismic Detectability of a Subsurface Ocean on Europa , 2001 .

[126]  R. Pappalardo,et al.  Rise of Deep Melt into Ganymede's Ocean and Implications for Astrobiology , 2001 .

[127]  Jeffrey S. Kargel,et al.  Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life , 2000 .

[128]  M. Kivelson,et al.  Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations , 2000 .

[129]  G. Schubert,et al.  The Tidal Response of Europa , 2000 .

[130]  Charlotte A. Rowe,et al.  Seismic and acoustic observations at Mount Erebus Volcano, Ross Island, Antarctica, 1994-1998 , 2000 .

[131]  A. Fortes Exobiological Implications of a Possible Ammonia–Water Ocean inside Titan , 2000 .

[132]  Kaare Lund Rasmussen,et al.  A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data , 2000 .

[133]  Thomas M. McCollom,et al.  Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa , 1999 .

[134]  Kevin Zahnle,et al.  Cratering Rates in the Outer Solar System , 1999 .

[135]  Spencer,et al.  Temperatures on europa from galileo photopolarimeter-radiometer: nighttime thermal anomalies , 1999, Science.

[136]  O. Castelnau,et al.  Compressive creep of ice containing a liquid intergranular phase: Rate‐controlling processes in the dislocation creep regime , 1999 .

[137]  K. Zahnle,et al.  Cratering rates on the Galilean satellites. , 1998, Icarus.

[138]  C. T. Russell,et al.  Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto , 1998, Nature.

[139]  Bradford Sturtevant,et al.  Bubble collapse as the source of tremor at Old Faithful Geyser , 1998 .

[140]  Naoki Kobayashi,et al.  Continuous excitation of planetary free oscillations by atmospheric disturbances , 1998, Nature.

[141]  Robert T. Pappalardo,et al.  Tectonic Processes on Europa: Tidal Stresses, Mechanical Response, and Visible Features , 1998 .

[142]  W. Folkner,et al.  Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. , 1997, Science.

[143]  Terry Z. Martin,et al.  Galileo Photopolarimeter-Radiometer Observations of Jupiter and the Galilean Satellites , 1996, Science.

[144]  X. X. Newhall,et al.  Lunar Moments, Tides, Orientation, and Coordinate Frames , 1996 .

[145]  H. Kanamori,et al.  The origin of harmonic tremor at Old Faithful geyser , 1996, Nature.

[146]  J. Kargel,et al.  Magnesium Sulfate-Water to 400 MPa Using a Novel Piezometer: Densities, Phase Equilibria, and Planetological Implications , 1995 .

[147]  Christopher D. Stephens,et al.  Precursory swarms of long-period events at Redoubt Volcano (1989–1990), Alaska: Their origin and use as a forecasting tool , 1994 .

[148]  James G. Williams,et al.  Contributions to the Earth's Obliquity Rate, Precession, and Nutation , 1994 .

[149]  J. Hinderer,et al.  Performance of Wielandt-Streckeisen STS-1 seismometers in the tidal domain—preliminary results , 1994 .

[150]  Bruce R. Julian,et al.  Volcanic tremor: Nonlinear excitation by fluid flow , 1994 .

[151]  Jeffrey S. Kargel,et al.  Brine volcanism and the interior structures of asteroids and icy satellites , 1991 .

[152]  Charles S. Cox,et al.  A Deep-Sea Differential Pressure Gauge , 1984 .

[153]  J. Poirier Rheology of ices: a key to the tectonics of the ice moons of Jupiter and Saturn , 1982, Nature.

[154]  L. Ksanfomaliti,et al.  Microseisms at the VENERA-13 and VENERA-14 Landing Sites , 1982 .

[155]  M. Nafi Toksöz,et al.  Seismic energy release of the moon , 1981 .

[156]  P. A. Penzo,et al.  Voyager mission description , 1977 .

[157]  Don L. Anderson,et al.  Seismology on Mars , 1977 .

[158]  D. L. Anderson,et al.  The Viking Seismic Experiment , 1976, Science.

[159]  Yosio Nakamura,et al.  Lunar seismicity, structure, and tectonics , 1974, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[160]  JOHN S. Lewis Satellites of the Outer Planets: Their Physical and Chemical Nature , 1971 .

[161]  Yosio Nakamura,et al.  Passive Seismic Experiment , 1970, Science.

[162]  A. P. Crary Seismic studies on Fletcher's Ice Island, T‐3 , 1954 .

[163]  M. Longuet-Higgins A theory of the origin of microseisms , 1950, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[164]  R. Oldham,et al.  The Constitution of the Interior of the Earth as Revealed by Earthquakes , 1906, Nature.

[165]  D. Schroeder,et al.  Bright prospects for radar detection of Europa’s ocean , 2017 .

[166]  A. Coustenis,et al.  SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING , 2016 .

[167]  S. Calcutt,et al.  THE EUROPA SEISMIC PACKAGE (ESP) CONCEPT: 1. SELECTING A BROADBAND MICROSEISMOMETER FOR OCEAN WORLDS , 2016 .

[168]  W. McKinnon,et al.  Forming Ganymede’s grooves at smaller strain: Toward a self-consistent local and global strain history for Ganymede , 2015 .

[169]  David L. Valentine,et al.  Seismic Detection of the Lunar Core , 2011 .

[170]  M. Knapmeyer 4.2.3.3 Planetary seismology , 2009 .

[171]  Henry B. Garrett,et al.  Europa's Radiation Environment and Its Effects on the Surface , 2009 .

[172]  Kenneth H. Nealson,et al.  Astrobiology and the Potential for Life on Europa , 2009 .

[173]  C. Sotin,et al.  Tides and Tidal Heating on Europa , 2009 .

[174]  M. Manga,et al.  Geodynamics of Europa's Icy Shell , 2009 .

[175]  Francis Nimmo,et al.  Chaotic Terrain on Europa , 2009 .

[176]  M. Kivelson,et al.  Europa's Interaction with the Jovian Magnetosphere , 2009 .

[177]  Kerry J. Cupit Tectonics of Europa , 2008 .

[178]  C. Rowea,et al.  Seismic and acoustic observations at Mount Erebus Volcano , Ross Island , Antarctica , 1994 – 1998 , 2007 .

[179]  G. Schubert,et al.  Interior composition, structure and dynamics of the Galilean satellites , 2004 .

[180]  Michael H. Wong,et al.  Radiation effects on the surfaces of the Galilean satellites , 2004 .

[181]  B. Mosser,et al.  Planetary seismology , 1993 .

[182]  Christopher T. Russell,et al.  The Galileo mission , 1992 .

[183]  F. Jensen,et al.  Shear Properties of Ocean Sediments Determined from Numerical Modelling of Scholte Wave Data , 1986 .

[184]  R. Wiggins,et al.  Apollo 11 passive seismic experiment , 1970 .