Design of Architectures and Materials in In‐Plane Micro‐supercapacitors: Current Status and Future Challenges

The rapid development of integrated electronics and the boom in miniaturized and portable devices have increased the demand for miniaturized and on‐chip energy storage units. Currently thin‐film batteries or microsized batteries are commercially available for miniaturized devices. However, they still suffer from several limitations, such as short lifetime, low power density, and complex architecture, which limit their integration. Supercapacitors can surmount all these limitations. Particularly for micro‐supercapacitors with planar architectures, due to their unique design of the in‐plane electrode finger arrays, they possess the merits of easy fabrication and integration into on‐chip miniaturized electronics. Here, the focus is on the different strategies to design electrode finger arrays and the material engineering of in‐plane micro‐supercapacitors. It is expected that the advances in micro‐supercapacitors with in‐plane architectures will offer new opportunities for the miniaturization and integration of energy‐storage units for portable devices and on‐chip electronics.

[1]  I. Bardenhagen,et al.  A concept for direct deposition of thin film batteries on flexible polymer substrate , 2016 .

[2]  A. Scarpellini,et al.  High-performance flexible nanoporous Si-carbon nanotube paper anodes for micro-battery applications , 2016, Nanotechnology.

[3]  Tong Zhang,et al.  High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes , 2016 .

[4]  S. Balaji,et al.  Sputtering Deposition of Sn–Mo-Based Composite Anode for Thin-Film Li-Ion Batteries , 2016, Journal of Electronic Materials.

[5]  Libo Zhao,et al.  High Stability Induced by the TiN/Ti Interlayer in Three-Dimensional Si/Ge Nanorod Arrays as Anode in Micro Lithium Ion Battery. , 2016, ACS applied materials & interfaces.

[6]  Akira Watanabe,et al.  Flexible carbon micro-supercapacitors prepared by direct cw-laser writing , 2016, SPIE LASE.

[7]  Sheng Yang,et al.  Ultraflexible In‐Plane Micro‐Supercapacitors by Direct Printing of Solution‐Processable Electrochemically Exfoliated Graphene , 2016, Advanced materials.

[8]  Peihua Huang,et al.  On-chip and freestanding elastic carbon films for micro-supercapacitors , 2016, Science.

[9]  Liwei Lin,et al.  ZIF-8 Cooperating in TiN/Ti/Si Nanorods as Efficient Anodes in Micro-Lithium-Ion-Batteries. , 2016, ACS applied materials & interfaces.

[10]  Yongsung Ji,et al.  High‐Performance Pseudocapacitive Microsupercapacitors from Laser‐Induced Graphene , 2016, Advanced materials.

[11]  Goangseup Zi,et al.  Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array , 2016 .

[12]  Sanggeun Jeon,et al.  Body‐Attachable and Stretchable Multisensors Integrated with Wirelessly Rechargeable Energy Storage Devices , 2016, Advanced materials.

[13]  Z. Lou,et al.  Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications , 2016, Nano Research.

[14]  C. O’Dwyer,et al.  Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries. , 2015, ACS applied materials & interfaces.

[15]  Z. Ai,et al.  3D hierarchical mesoporous roselike NiO nanosheets for high-performance supercapacitor electrodes , 2015 .

[16]  Liang Peng,et al.  Enhanced supercapacitor performance by fabricating hierarchical nanoporous nickel/nickel hydroxide structure , 2015 .

[17]  Zhihong Zhu,et al.  High-rate supercapacitor utilizing hydrous ruthenium dioxide nanotubes , 2015 .

[18]  R. Ghodssi,et al.  Selective deposition of nanostructured ruthenium oxide using Tobacco mosaic virus for micro-supercapacitors in solid Nafion electrolyte , 2015 .

[19]  H. Ardebili,et al.  Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. , 2015, Nanoscale.

[20]  K. Choi,et al.  Screen printed silver top electrode for efficient inverted organic solar cells , 2015 .

[21]  Kenjiro Fukuda,et al.  Inkjet-printed copper electrodes using photonic sintering and their application to organic thin-film transistors , 2015 .

[22]  Wei Wang,et al.  Suspended Wavy Graphene Microribbons for Highly Stretchable Microsupercapacitors , 2015, Advanced materials.

[23]  P. Patil,et al.  Design and electro-synthesis of 3-D nanofibers of MnO2 thin films and their application in high performance supercapacitor , 2015 .

[24]  Ruizhi Li,et al.  Carbon‐Stabilized High‐Capacity Ferroferric Oxide Nanorod Array for Flexible Solid‐State Alkaline Battery–Supercapacitor Hybrid Device with High Environmental Suitability , 2015 .

[25]  G. Palleschi,et al.  Screen-printed electrode modified with carbon black nanoparticles for phosphate detection by measuring the electroactive phosphomolybdate complex. , 2015, Talanta.

[26]  Shlomo Magdassi,et al.  Multienzyme Inkjet Printed 2D Arrays. , 2015, ACS applied materials & interfaces.

[27]  Sundaram Senthilarasu,et al.  Inkjet-printed TiO2 nanoparticles from aqueous solutions for dye-sensitized solar cells (DSSCs) , 2015 .

[28]  J. Rogers,et al.  Inkjet Printing of Regenerated Silk Fibroin: From Printable Forms to Printable Functions , 2015, Advanced materials.

[29]  Jie Lin,et al.  Three-Dimensional Cu2ZnSnS4 Films with Modified Surface for Thin-Film Lithium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[30]  P. Milani,et al.  Flexible, ionic liquid-based micro-supercapacitor produced by supersonic cluster beam deposition , 2015 .

[31]  C. Das,et al.  Solid State Flexible Asymmetric Supercapacitor Based on Carbon Fiber Supported Hierarchical Co(OH)xCO3 and Ni(OH)2. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[32]  Shuang Li,et al.  Alternating Stacked Graphene‐Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for High‐Energy Micro‐Supercapacitors , 2015, Advanced materials.

[33]  Jeong Sook Ha,et al.  Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte , 2015 .

[34]  M. El‐Kady,et al.  Graphene-based materials for flexible supercapacitors. , 2015, Chemical Society reviews.

[35]  G. Bidan,et al.  3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid , 2015, Scientific Reports.

[36]  Bing Li,et al.  Leaf Vein‐Inspired Nanochanneled Graphene Film for Highly Efficient Micro‐Supercapacitors , 2015 .

[37]  S. Yeates,et al.  Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics , 2015, Journal of Materials Science.

[38]  Husam N. Alshareef,et al.  Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering , 2015 .

[39]  Jee Youn Hwang,et al.  Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage , 2015, Proceedings of the National Academy of Sciences.

[40]  M. Haruta,et al.  Negligible "negative space-charge layer effects" at oxide-electrolyte/electrode interfaces of thin-film batteries. , 2015, Nano letters.

[41]  Costas P. Grigoropoulos,et al.  Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide , 2015 .

[42]  Ning Pan,et al.  Supercapacitors Performance Evaluation , 2015 .

[43]  Huiling Yang,et al.  Flexible Asymmetric Micro‐Supercapacitors Based on Bi2O3 and MnO2 Nanoflowers: Larger Areal Mass Promises Higher Energy Density , 2015 .

[44]  B. Scrosati,et al.  The role of graphene for electrochemical energy storage. , 2015, Nature materials.

[45]  Jianshan Ye,et al.  A spinneret as the key component for surface-porous graphene fibers in high energy density micro-supercapacitors , 2015 .

[46]  Chee Kai Chua,et al.  Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors , 2015 .

[47]  Wenwen Liu,et al.  High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film. , 2015, ACS nano.

[48]  Huisheng Peng,et al.  Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. , 2014, Angewandte Chemie.

[49]  C. Detavernier,et al.  Nanostructured TiO2/carbon nanosheet hybrid electrode for high-rate thin-film lithium-ion batteries , 2014, Nanotechnology.

[50]  Jeong Sook Ha,et al.  all-solid-state fl exible micro-supercapacitor arrays with layer-by-layer assembled MWNT / MnO x nanocomposite electrodes † , 2014 .

[51]  D. Pech,et al.  Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors , 2014 .

[52]  Y. Jiao,et al.  Hybrid α-Fe2O3@NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts , 2014 .

[53]  Gengfeng Zheng,et al.  Reduced Mesoporous Co3O4 Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes , 2014 .

[54]  Goangseup Zi,et al.  Biaxially stretchable, integrated array of high performance microsupercapacitors. , 2014, ACS nano.

[55]  G. Bidan,et al.  High performance of symmetric micro-supercapacitors based on silicon nanowires using N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide as electrolyte , 2014 .

[56]  Dingshan Yu,et al.  Controlled Functionalization of Carbonaceous Fibers for Asymmetric Solid‐State Micro‐Supercapacitors with High Volumetric Energy Density , 2014, Advanced materials.

[57]  Y. Tong,et al.  A New Benchmark Capacitance for Supercapacitor Anodes by Mixed‐Valence Sulfur‐Doped V6O13−x , 2014, Advanced materials.

[58]  Goangseup Zi,et al.  High-density, stretchable, all-solid-state microsupercapacitor arrays. , 2014, ACS nano.

[59]  Roya Maboudian,et al.  Flexible micro-supercapacitors with high energy density from simple transfer of photoresist-derived porous carbon electrodes , 2014 .

[60]  Afriyanti Sumboja,et al.  Flexible and Highly Scalable V2O5‐rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices , 2014 .

[61]  F. Wen,et al.  Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter , 2014 .

[62]  Hyung-Jun Koo,et al.  Selective Wetting‐Induced Micro‐Electrode Patterning for Flexible Micro‐Supercapacitors , 2014, Advanced materials.

[63]  K. Edström,et al.  Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance. , 2014, Nanoscale.

[64]  K. Müllen,et al.  Layer‐by‐Layer Assembled Heteroatom‐Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro‐Supercapacitors , 2014, Advanced materials.

[65]  L. Dai,et al.  Flexible supercapacitors based on carbon nanomaterials , 2014 .

[66]  Chao Gao,et al.  Graphene fiber-based asymmetric micro-supercapacitors , 2014 .

[67]  Byeong‐Su Kim,et al.  Electrospun nanofiber of hybrid manganese oxides for supercapacitor: Relevance to mixed inorganic interfaces , 2014 .

[68]  Hui-Ming Cheng,et al.  Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage , 2014 .

[69]  Klaus Müllen,et al.  Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers , 2014 .

[70]  Roya Maboudian,et al.  High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte , 2014 .

[71]  P. Irazoqui,et al.  Ultrasmall Integrated 3D Micro‐Supercapacitors Solve Energy Storage for Miniature Devices , 2014 .

[72]  Lele Peng,et al.  Two dimensional nanomaterials for flexible supercapacitors. , 2014, Chemical Society reviews.

[73]  Zheng You,et al.  Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures , 2014 .

[74]  W. Schreiner,et al.  Supercapacitor Electrodes Obtained by Directly Bonding 2D MoS2 on Reduced Graphene Oxide , 2014 .

[75]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[76]  Jianqiang Wang,et al.  Flexible and Wire‐Shaped Micro‐Supercapacitor Based on Ni(OH)2‐Nanowire and Ordered Mesoporous Carbon Electrodes , 2014 .

[77]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[78]  Kai Cui,et al.  Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. , 2014, Nano letters.

[79]  Majid Beidaghi,et al.  Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors , 2014 .

[80]  M. Schwab,et al.  Inkjet-printed energy storage device using graphene/polyaniline inks , 2014 .

[81]  Bin Liu,et al.  Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. , 2014, Angewandte Chemie.

[82]  Dimos Poulikakos,et al.  Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes , 2014, Nanotechnology.

[83]  MinHo Yang,et al.  Coaxial RuO₂-ITO nanopillars for transparent supercapacitor application. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[84]  G. F. Ortiz,et al.  Electrodeposition of copper–tin nanowires on Ti foils for rechargeable lithium micro-batteries with high energy density , 2014 .

[85]  Ping Xu,et al.  Carbon Nanotube Fiber Based Stretchable Wire‐Shaped Supercapacitors , 2014 .

[86]  Min Chen,et al.  Nickel–Cobalt Layered Double Hydroxide Nanosheets for High‐performance Supercapacitor Electrode Materials , 2014 .

[87]  Ashutosh Tiwari,et al.  Recent developments in garnet based solid state electrolytes for thin film batteries , 2014 .

[88]  T. Sajavaara,et al.  Atomic Layer Deposition of Spinel Lithium Manganese Oxide by Film-Body-Controlled Lithium Incorporation for Thin-Film Lithium-Ion Batteries , 2014 .

[89]  Daeil Kim,et al.  Erratum: High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnOx nanocomposite electrodes (Nanoscale (2014) 6 (9655-9664)) , 2014 .

[90]  Pierre-Louis Taberna,et al.  On-chip micro-supercapacitors for operation in a wide temperature range , 2013 .

[91]  Wenping Si,et al.  On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers , 2013 .

[92]  Yongyao Xia,et al.  Recent Progress in Supercapacitors: From Materials Design to System Construction , 2013, Advanced materials.

[93]  Klaus Müllen,et al.  Graphene-based in-plane micro-supercapacitors with high power and energy densities , 2013, Nature Communications.

[94]  Shuhong Yu,et al.  Bacterial‐Cellulose‐Derived Carbon Nanofiber@MnO2 and Nitrogen‐Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density , 2013, Advanced materials.

[95]  H. Mao,et al.  Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors , 2013, Nature Communications.

[96]  Wei Gao,et al.  Direct laser-patterned micro-supercapacitors from paintable MoS2 films. , 2013, Small.

[97]  Xingbin Yan,et al.  Superior Micro‐Supercapacitors Based on Graphene Quantum Dots , 2013 .

[98]  Weiwei Zhou,et al.  Three dimensionals α-Fe2O3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries , 2013 .

[99]  Gunchul Shin,et al.  Fabrication of a stretchable solid-state micro-supercapacitor array. , 2013, ACS nano.

[100]  Zhiqiang Niu,et al.  All‐Solid‐State Flexible Ultrathin Micro‐Supercapacitors Based on Graphene , 2013, Advanced materials.

[101]  Z. Fu,et al.  Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries , 2013 .

[102]  F. Kang,et al.  A high-energy-density micro supercapacitor of asymmetric MnO2–carbon configuration by using micro-fabrication technologies , 2013 .

[103]  Q. Xue,et al.  Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. , 2013, Nanoscale.

[104]  R. Maboudian,et al.  Photoresist-derived porous carbon for on-chip micro-supercapacitors , 2013 .

[105]  Wako Naoi,et al.  New generation "nanohybrid supercapacitor". , 2013, Accounts of chemical research.

[106]  D. Pech,et al.  Influence of the configuration in planar interdigitated electrochemical micro-capacitors , 2013 .

[107]  Jian Yan,et al.  Manganese oxide micro-supercapacitors with ultra-high areal capacitance. , 2013, Nanoscale.

[108]  L. Qu,et al.  All‐Graphene Core‐Sheath Microfibers for All‐Solid‐State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles , 2013, Advanced materials.

[109]  N. A. Kyeremateng,et al.  Sulfidated TiO2 nanotubes: a potential 3D cathode material for Li-ion micro batteries. , 2013, Chemical communications.

[110]  Yi Xie,et al.  Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. , 2013, Nano letters.

[111]  Yusuke Yamauchi,et al.  Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors , 2013 .

[112]  S. Lofland,et al.  Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips , 2013 .

[113]  Chen Chen,et al.  Twisting Carbon Nanotube Fibers for Both Wire‐Shaped Micro‐Supercapacitor and Micro‐Battery , 2013, Advanced materials.

[114]  Xiaodong Chen,et al.  Highly Stretchable, Integrated Supercapacitors Based on Single‐Walled Carbon Nanotube Films with Continuous Reticulate Architecture , 2013, Advanced materials.

[115]  M. El‐Kady,et al.  Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage , 2013, Nature Communications.

[116]  Zheng Yan,et al.  3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. , 2013, Nano letters.

[117]  Fabrication and tests of a three-dimensional microsupercapacitor using SU-8 photoresist as the separator , 2012 .

[118]  M. Beidaghi,et al.  Micro‐Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance , 2012 .

[119]  Seung Hwan Ko,et al.  Solution processed aluminum paper for flexible electronics. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[120]  Keon Jae Lee,et al.  Bendable inorganic thin-film battery for fully flexible electronic systems. , 2012, Nano letters.

[121]  Alexander L. Ivanovskii,et al.  Graphene-based and graphene-like materials , 2012 .

[122]  Phl Peter Notten,et al.  CO3O4 as anode material for thin film micro-batteries prepared by remote plasma atomic layer deposition , 2012 .

[123]  D. Pech,et al.  Wafer-level fabrication process for fully encapsulated micro-supercapacitors with high specific energy , 2012 .

[124]  Wi Hyoung Lee,et al.  Inkjet-Printed Reduced Graphene Oxide/Poly(Vinyl Alcohol) Composite Electrodes for Flexible Transparent Organic Field-Effect Transistors , 2012 .

[125]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[126]  Yung-Cheng Lee,et al.  Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. , 2012, Nano letters.

[127]  Aifang Yu,et al.  An All‐Solid‐State Flexible Micro‐supercapacitor on a Chip , 2011 .

[128]  Chunlei Wang,et al.  Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes , 2011 .

[129]  Jinlong Yang,et al.  Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. , 2011, Journal of the American Chemical Society.

[130]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[131]  G. Cui,et al.  Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries , 2011 .

[132]  Weiguo Song,et al.  Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. , 2011, Nanoscale.

[133]  Xin Zhao,et al.  The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. , 2011, Nanoscale.

[134]  P. Ajayan,et al.  Ultrathin planar graphene supercapacitors. , 2011, Nano letters.

[135]  Chunlei Wang,et al.  Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors , 2011 .

[136]  François Béguin,et al.  Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor , 2011 .

[137]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[138]  Seth R. Marder,et al.  Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics , 2010, Science.

[139]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[140]  R. Ruoff,et al.  All-organic vapor sensor using inkjet-printed reduced graphene oxide. , 2010, Angewandte Chemie.

[141]  Norbert Fabre,et al.  Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor , 2010 .

[142]  R. Kaner,et al.  Photothermal Deoxygenation of Graphene Oxide for Patterning and Distributed Ignition Applications , 2010, Advanced materials.

[143]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[144]  Rodolfo Cruz-Silva,et al.  Flash reduction and patterning of graphite oxide and its polymer composite. , 2009, Journal of the American Chemical Society.

[145]  M. Yousaf,et al.  Electrochemical and chemical microfluidic gold etching to generate patterned and gradient substrates for cell adhesion and cell migration. , 2009, Analytical chemistry.

[146]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[147]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[148]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[149]  E. Lust,et al.  Electrical double-layer characteristics of novel carbide-derived carbon materials , 2006 .

[150]  Kun-Hong Lee,et al.  Fabrication of microcapacitors using conducting polymer microelectrodes , 2003 .

[151]  Sung-Man Lee,et al.  An all-solid-state thin film battery using LISIPON electrolyte and Si–V negative electrode films , 2003 .

[152]  B. Conway,et al.  The role and utilization of pseudocapacitance for energy storage by supercapacitors , 1997 .

[153]  J.R. Weeks Metallized Paper Capacitors , 1950, Proceedings of the IRE.

[154]  D. Mclean,et al.  Paper Capacitors Containing Chlorinated lmpregnants - Stabilization by Anthraquinone , 1945 .