Efficient digit-serial normal basis multipliers over binary extension fields

In this article, two digit-serial architectures for normal basis multipliers over (GF(2m)) are presented. These two structures have the same gate count and gate delay. We also consider two special cases of optimal normal bases for the two digit-serial architectures. A straightforward implementation leaves gate redundancy in both of them. An algorithm that can considerably reduce the redundancy is also developed. The proposed architectures are compared with the existing ones in terms of gate and time complexities.

[1]  M. Anwar Hasan,et al.  Fast Normal Basis Multiplication Using General Purpose Processors , 2001, Selected Areas in Cryptography.

[2]  Michele Elia,et al.  On the Inherent Space Complexity of Fast Parallel Multipliers for GF(2/supm/) , 2002, IEEE Trans. Computers.

[3]  M. Anwar Hasan,et al.  Efficient Multiplication Beyond Optimal Normal Bases , 2003, IEEE Trans. Computers.

[4]  M. Anwar Hasan,et al.  A New Construction of Massey-Omura Parallel Multiplier over GF(2m) , 2002, IEEE Trans. Computers.

[5]  A. Menezes,et al.  Applications of Finite Fields , 1992 .

[6]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[7]  Trieu-Kien Truong,et al.  VLSI Architectures for Computing Multiplications and Inverses in GF(2m) , 1983, IEEE Transactions on Computers.

[8]  M. Anwar Hasan,et al.  Efficient digit-serial normal basis multipliers over GF(2/sup m/) , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[9]  Berk Sunar,et al.  An Efficient Optimal Normal Basis Type II Multiplier , 2001, IEEE Trans. Computers.

[10]  B. Sunar,et al.  Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[11]  Gerald E. Sobelman,et al.  Improved VLSI designs for multiplication and inversion in GF(2/sup M/) over normal bases , 2000, Proceedings of 13th Annual IEEE International ASIC/SOC Conference (Cat. No.00TH8541).

[12]  Ronald C. Mullin,et al.  Optimal normal bases in GF(pn) , 1989, Discret. Appl. Math..

[13]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: Preface , 1994 .

[14]  V.K. Bhargava,et al.  A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields , 1993, IEEE Trans. Computers.

[15]  Berk Sunar,et al.  Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields , 1998, IEEE Trans. Computers.

[16]  Gordon B. Agnew,et al.  An implementation for a fast public-key cryptosystem , 2004, Journal of Cryptology.