Tetanus toxin C fragment-conjugated nanoparticles for targeted drug delivery to neurons.

[1]  C. Lehr,et al.  Coupling of biotin-(poly(ethylene glycol))amine to poly(D,L-lactide-co-glycolide) nanoparticles for versatile surface modification. , 2007, Bioconjugate chemistry.

[2]  Robert Langer,et al.  Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. , 2007, Biomaterials.

[3]  W. Pardridge,et al.  Blood-brain barrier delivery. , 2007, Drug discovery today.

[4]  A. Domb,et al.  PEG-PLA block copolymer as potential drug carrier: preparation and characterization. , 2006, Macromolecular bioscience.

[5]  J. Richie,et al.  Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  B. Gander,et al.  One-step preparation of polyelectrolyte-coated PLGA microparticles and their functionalization with model ligands. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[7]  P. Costanzo,et al.  Nanoparticle agglutination: acceleration of aggregation rates and broadening of the analyte concentration range using mixtures of various-sized nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[8]  Francis C Szoka,et al.  Barriers to carrier mediated drug and gene delivery to brain tumors. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[9]  R. Gurny,et al.  Biodegradable nanoparticles for direct or two-step tumor immunotargeting. , 2006, Bioconjugate chemistry.

[10]  I. Ay,et al.  Tetanus toxin fragment C fusion facilitates protein delivery to CNS neurons from cerebrospinal fluid in mice , 2005, Journal of neurochemistry.

[11]  G. Broze,et al.  Role for the Kunitz-3 Domain of Tissue Factor Pathway Inhibitor-&agr; in Cell Surface Binding , 2004, Circulation.

[12]  Robert Gurny,et al.  Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin for active targeting. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[13]  P. Costanzo,et al.  Protein−Ligand Mediated Aggregation of Nanoparticles: A Study of Synthesis and Assembly Mechanism , 2004 .

[14]  P. Couvreur,et al.  Surface-engineered nanoparticles for multiple ligand coupling. , 2003, Biomaterials.

[15]  Jayanth Panyam,et al.  Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles. , 2003, International journal of pharmaceutics.

[16]  F. Gage,et al.  Retrograde Viral Delivery of IGF-1 Prolongs Survival in a Mouse ALS Model , 2003, Science.

[17]  B. Pitt,et al.  Efficient intracellular delivery of oligonucleotides formulated in folate receptor-targeted lipid vesicles. , 2002, Bioconjugate chemistry.

[18]  G. Schiavo,et al.  Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR , 2002, The Journal of cell biology.

[19]  John B. Anderson,et al.  MMDB: Entrez's 3D-structure database , 2002, Nucleic Acids Res..

[20]  W. Pardridge,et al.  Brain-specific expression of an exogenous gene after i.v. administration , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Baker,et al.  Improved pharmacokinetic properties of a polyethylene glycol-modified form of interferon-beta-1a with preserved in vitro bioactivity. , 2001, The Journal of pharmacology and experimental therapeutics.

[22]  J. Kreuter,et al.  Nanoparticulate systems for brain delivery of drugs. , 2001, Advanced drug delivery reviews.

[23]  N. Fairweather,et al.  Analysis of mutants of tetanus toxin HC fragment: ganglioside binding, cell binding and retrograde axonal transport properties , 2000, Molecular microbiology.

[24]  Yanli Wang,et al.  MMDB: Entrez's 3D-structure database , 2003, Nucleic Acids Res..

[25]  B. Rupp,et al.  The 1.61 Angstrom Structure of the Tetanus Toxin Ganglioside Binding Region: Solved by MAD and Mir Phase Combination , 1998 .

[26]  M C Davies,et al.  A novel biotinylated degradable polymer for cell-interactive applications. , 1998, Biotechnology and bioengineering.

[27]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[28]  R. Schnaar,et al.  Identification of a Ganglioside Recognition Domain of Tetanus Toxin Using a Novel Ganglioside Photoaffinity Ligand* , 1997, The Journal of Biological Chemistry.

[29]  E. Levine,et al.  Fialuridine and its metabolites inhibit DNA polymerase gamma at sites of multiple adjacent analog incorporation, decrease mtDNA abundance, and cause mitochondrial structural defects in cultured hepatoblasts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  V. Torchilin,et al.  Biodegradable long-circulating polymeric nanospheres. , 1994, Science.

[31]  A Coda,et al.  Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 A resolution. , 1993, Journal of molecular biology.

[32]  G. Fasman,et al.  Practical Handbook of Biochemistry and Molecular Biology , 1989 .

[33]  J. Coyle,et al.  Characterization of a glutamic acid neurotransmitter binding site on neuroblastoma hybrid cells. , 1984, The Journal of biological chemistry.