MIRS: an imaging spectrometer for the MMX mission

MIRS (MMX InfraRed Spectrometer) is an imaging spectrometer onboard of MMX (Martian Moon eXploration) mission. MMX is a JAXA sample return mission that will be launched in September 2024 to Martian system, to bring back to Earth sample from Phobos, to observe in detail Phobos and Deimos and to monitor Mars’s atmosphere with observations of dust storm, clouds, and distributions of total amount of water vapor. The main objectives of the mission are to understand the origin of Martian moons, to constrain the processes for planetary formation and to understand the evolutionary processes of the Martian system. MIRS is a push-broom imaging spectrometer working in the range from 0.9 to 3.6 micron.

[1]  Andrew Scott Rivkin,et al.  Phobos and Deimos , 2015 .

[2]  Bradford A. Smith,et al.  Phobos: Preliminary Results from Mariner 7 , 1970, Science.

[3]  C. S. Edwards,et al.  Spectral Properties of Phobos from the Mars Global Surveyor Thermal Emission Spectrometer: Evidence for Water and Carbonate , 2015 .

[4]  R. Jaumann,et al.  Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu , 2019, Nature Astronomy.

[5]  J. Wisdom,et al.  The Chaotic Obliquity of Mars , 1993, Science.

[6]  H. Keller,et al.  Observations of atmospheric water vapor above the Tharsis volcanoes on Mars with the OMEGA/MEx imaging spectrometer , 2008 .

[7]  Thomas C. Duxbury,et al.  Mars Odyssey THEMIS Observations of Phobos: New Spectral and Thermophysical Measurements , 2018 .

[8]  Scott L. Murchie,et al.  Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide , 2009 .

[9]  Justin M. McGlown,et al.  The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests , 2020, Space Science Reviews.

[10]  Scott L. Murchie,et al.  Mars Pathfinder spectral measurements of Phobos and Deimos: Comparison with previous data , 1999 .

[11]  A. Araya,et al.  Martian moons exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planets , 2021, Earth, Planets and Space.

[12]  O. Forni,et al.  A study of the properties of a local dust storm with Mars Express OMEGA and PFS data , 2009 .

[13]  L. V. Moroz,et al.  Reflectance spectra of olivine-orthopyroxene-bearing assemblages at decreased temperatures: implications for remote sensing of asteroids , 2000 .

[14]  K. Herkenhoff,et al.  The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation , 2021, Space Science Reviews.

[15]  F. Lefévre,et al.  Observation of O2 1.27 μm dayglow by SPICAM IR: Seasonal distribution for the first Martian year of Mars Express , 2006 .

[16]  K. Pang,et al.  Multicolor Observations of Phobos with the Viking Lander Cameras: Evidence for a Carbonaceous Chondritic Composition , 1978, Science.

[17]  S. Murchie,et al.  Vertical distribution of dust and water ice aerosols from CRISM limb‐geometry observations , 2013 .

[18]  S. Erard,et al.  Martian Aerosols: Near-Infrared Spectral Properties and Effects on the Observation of the Surface , 1994 .

[19]  Stephan Ulamec,et al.  Science operation plan of Phobos and Deimos from the MMX spacecraft , 2021, Earth, Planets and Space.

[20]  Pascal Rosenblatt,et al.  On the formation of the martian moons from a circum-martian accretion disk , 2012 .

[21]  Alexei Lyapustin,et al.  Surface reflectance of Mars observed by CRISM/MRO: 1. Multi‐angle Approach for Retrieval of Surface Reflectance from CRISM observations (MARS‐ReCO) , 2013 .

[22]  E. Kührt,et al.  A thermal model of the Martian satellites , 1989 .

[23]  J. Schofield,et al.  Hydrogen escape from Mars enhanced by deep convection in dust storms , 2018 .

[24]  Jean-Pierre Bibring,et al.  Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method , 2007 .

[25]  Richard P. Binzel,et al.  The OSIRIS‐REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations , 2015 .

[26]  A. Doressoundiram,et al.  The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description , 2021, Space Science Reviews.

[27]  J. Laskar,et al.  The chaotic obliquity of the planets , 1993, Nature.

[28]  Jean-Pierre Bibring,et al.  Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR using a Monte-Carlo approach: Application to the OMEGA observations of high latitude regions of Mars , 2007 .

[29]  S. Murchie,et al.  Correction to "Extensive MRO CRISM observations of 1.27 µm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations" , 2012 .

[30]  B. Hansen A dynamical context for the origin of Phobos and Deimos , 2018, 1801.07775.

[31]  D. Trilling,et al.  Near-Infrared Spectrophotometry of Phobos and Deimos , 2002 .

[32]  Publisher's Note , 2018, Anaesthesia.

[33]  Jean-Pierre Bibring,et al.  Water in the Martian regolith from OMEGA/Mars Express , 2014, 1407.2550.

[34]  F. Daerden,et al.  The distribution, composition, and particle properties of Mars mesospheric aerosols: An analysis of CRISM visible/near-IR limb spectra with context from near-coincident MCS and MARCI observations , 2019, Icarus.

[35]  K. R. Ramsley,et al.  The surface geology and geomorphology of Phobos , 2014 .

[36]  S. Murchie,et al.  Vertical profiles of Mars 1.27 μm O 2 dayglow from MRO CRISM limb Spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles , 2017 .

[37]  E. Weigle,et al.  The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu , 2017, 1703.10574.

[38]  Jean-Pierre Bibring,et al.  First detection of O 2 1.27 μm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions , 2012 .

[39]  R. Canup,et al.  Origin of Phobos and Deimos by the impact of a Vesta-to-Ceres sized body with Mars , 2018, Science Advances.

[40]  D. Fussen,et al.  SPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere , 2015 .

[41]  Anna Fedorova,et al.  Annual survey of water vapor vertical distribution and water–aerosol coupling in the martian atmosphere observed by SPICAM/MEx solar occultations , 2013 .

[42]  New near‐IR observations of mesospheric CO2 and H2O clouds on Mars , 2011, 1103.3448.

[43]  N. Schneider,et al.  Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water , 2017 .

[44]  M. D. Dyar,et al.  Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1 , 2009, Science.

[45]  Michel Combes,et al.  Martian atmosphere studies from the ISM experiment , 1991 .

[46]  S. Charnoz,et al.  On the Impact Origin of Phobos and Deimos. III. Resulting Composition from Different Impactors , 2017, 1712.05154.

[47]  J. Fernando,et al.  Surface reflectance of Mars observed by CRISM/MRO: 2. Estimation of surface photometric properties in Gusev Crater and Meridiani Planum , 2013, 1303.4549.

[48]  K. Keil,et al.  The influence of temperature on the spectra of the A‐asteroids and implications for their silicate chemistry , 1998 .

[49]  Interpretation of the KRFM-infrared measurements of phobos , 1992 .

[50]  Grooves on Phobos. , 1988 .

[51]  J. Veverka,et al.  The Surface of Deimos: Contribution of Materials and Processes to Its Unique Appearance , 1996 .

[52]  K. Pang,et al.  The Composition of Phobos: Evidence for Carbonaceous Chondrite Surface from Spectral Analysis , 1978, Science.

[53]  U. Fink,et al.  Deimos: A reddish, D-type asteroid spectrum , 1992 .

[54]  Nicolas Thomas,et al.  Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results , 2010 .

[55]  Scott L. Murchie,et al.  Color Heterogeneity of the Surface of Phobos' Relationships to Geologic Features and Comparison to Meteorite Analogs , 1991 .

[56]  D. N. DellaGiustina,et al.  Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis , 2019, Nature Astronomy.

[57]  T. Encrenaz,et al.  Minor constituents in the Martian atmosphere from the ISM/Phobos experiment. , 1992, Icarus.

[59]  A. Szeto Orbital evolution and origin of the Martian satellites , 1983 .

[60]  Robert B. Singer,et al.  Effects of temperature on remotely sensed mineral absorption features , 1985 .

[61]  Jean-Pierre Bibring,et al.  Yearly and seasonal variations of low albedo surfaces on Mars in the OMEGA/MEx dataset: Constraints on aerosols properties and dust deposits , 2009, 1103.3426.

[62]  Bruce M. Jakosky,et al.  Infrared observations of Phobos and Deimos from Viking , 1982 .

[63]  Nikolay Ignatiev,et al.  Planetary Fourier spectrometer data analysis: Fast radiative transfer models , 2005 .

[64]  I. Gatley,et al.  Infrared observations of Phobos from Mariner 9 , 1974 .

[65]  F. Daerden,et al.  Mars atmospheric chemistry simulations with the GEM-Mars general circulation model , 2019, Icarus.

[66]  D. Fussen,et al.  Subvisible CO2 ice clouds detected in the mesosphere of Mars , 2006 .

[67]  F. Forget,et al.  Rocket dust storms and detached dust layers in the Martian atmosphere , 2012, 1208.5030.

[68]  J. Bibring,et al.  Composite KRFM-ISM spectrum of Phobos (0.315-3.1 microns) , 1991 .

[69]  R. Singer,et al.  Possible temperature variation effects on the interpretation of spatially resolved reflectance observations of asteroid surfaces , 1987 .

[70]  S. Sasaki Origin of Phobos--Aerodynamic Drag Capture by the Primary Atmosphere of Mars , 1990 .

[71]  J. Veverka,et al.  Photometric Properties of Phobos Surface Materials From Viking Images , 1998 .

[72]  Y. Kasaba,et al.  Mesospheric CO 2 ice clouds on Mars observed by Planetary Fourier Spectrometer onboard Mars Express , 2016 .

[73]  Nicolas Thomas,et al.  Composition of Surface Materials on the Moons of Mars , 2014 .

[74]  James W. Head,et al.  Mars impact ejecta in the regolith of Phobos: Bulk concentration and distribution , 2013 .

[75]  Franck Lefèvre,et al.  Three-dimensional modeling of ozone on Mars , 2004 .

[76]  Jean-Pierre Bibring,et al.  Seasonal variations of the martian CO over Hellas as observed by OMEGA/Mars Express , 2006 .

[77]  Pascal Rannou,et al.  Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model , 2004 .

[78]  Jimmy D Bell,et al.  Absorption and scattering properties of the Martian dust in the solar wavelengths. , 1997, Journal of geophysical research.

[79]  R. Clark,et al.  The surface composition of Iapetus: Mapping results from Cassini VIMS , 2012 .

[80]  R. Clancy,et al.  CO2 ice clouds in the upper atmosphere of Mars , 1998 .

[81]  Pascal Rosenblatt,et al.  On the Impact Origin of Phobos and Deimos. I. Thermodynamic and Physical Aspects , 2017, 1707.06282.

[82]  Thomas C. Duxbury,et al.  Compositional interpretation of PFS/MEx and TES/MGS thermal infrared spectra of Phobos , 2011 .

[83]  Pascal Rosenblatt,et al.  Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons , 2016 .

[84]  W. M. Kaula Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .

[85]  Cesare Barbieri,et al.  PHOBOS AS A D-TYPE CAPTURED ASTEROID, SPECTRAL MODELING FROM 0.25 TO 4.0 μm , 2013 .

[86]  S. Charnoz,et al.  On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution , 2017, 1711.02334.

[87]  Joseph A. Burns,et al.  Contradictory clues as to the origin of the Martian moons , 1992 .

[88]  Maria Teresa Capria,et al.  Asteroid thermophysical modeling , 2015, 1508.05575.

[89]  T. Encrenaz,et al.  Annual survey of water vapor behavior from the OMEGA mapping spectrometer onboard Mars Express , 2011 .

[90]  David A. Minton,et al.  An ongoing satellite-ring cycle of Mars and the origins of Phobos and Deimos , 2017 .

[91]  K. Kurosawa,et al.  Transport of impact ejecta from Mars to its moons as a means to reveal Martian history , 2019, Scientific Reports.

[92]  A. Spiga,et al.  Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere , 2012 .

[93]  J. Oberst,et al.  Phobos' shape and topography models , 2014 .

[94]  R. Craddock,et al.  Are Phobos and Deimos the result of a giant impact , 2011 .

[95]  Jean-Pierre Bibring,et al.  Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps , 2007 .

[96]  Raymond E. Arvidson,et al.  Spectral absorptions on Phobos and Deimos in the visible/near infrared wavelengths and their compositional constraints , 2014 .

[97]  S. Charnoz,et al.  On the Impact Origin of Phobos and Deimos. IV. Volatile Depletion , 2018, The Astrophysical Journal.

[98]  Thomas C. Duxbury,et al.  Grooves on Phobos: Their distribution, morphology and possible origin , 1979 .

[99]  L. Lebofsky,et al.  Systematic biases in radiometric diameter determinations , 1989 .

[100]  J. Blum,et al.  A new method to determine the grain size of planetary regolith , 2012, 1212.3108.

[101]  Kazunori Ogawa,et al.  Thermal conductivity model for powdered materials under vacuum based on experimental studies , 2015 .