Leakage and leakage sensitivity computation for combinational circuits

Leakage power is emerging as a new critical challenge in the design of high performance integrated circuits. Leakage is increasing dramatically with each technology generation and is expected to dominate system power. This paper describes a static (i.e input independent) technique for efficient and accurate leakage estimation. A probabilistic technique is presented to compute the average leakage of combinational circuits. The proposed technique gives accurate results with an average error of only 2% for the ISCAS benchmarks and accurately predict both subthreshold and gate leakage as well as the leakage sensitivities to process and environmental parameters.

[1]  Farid N. Najm,et al.  A gate-level leakage power reduction method for ultra-low-power CMOS circuits , 1997, Proceedings of CICC 97 - Custom Integrated Circuits Conference.

[2]  Robert W. Brodersen Low voltage design for portable systems , 2002 .

[3]  Mohamed I. Elmasry,et al.  Power dissipation analysis and optimization of deep submicron CMOS digital circuits , 1996, IEEE J. Solid State Circuits.

[4]  Rajendran Panda,et al.  Duet: an accurate leakage estimation and optimization tool for dual-Vt circuits , 2002, IEEE Trans. Very Large Scale Integr. Syst..

[5]  C. P. Ravikumar,et al.  Leakage power estimation for deep submicron circuits in an ASIC design environment , 2002, Proceedings of ASP-DAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation Conference and 15h International Conference on VLSI Design.

[6]  Mark C. Johnson,et al.  Estimation of standby leakage power in CMOS circuits considering accurate modeling of transistor stacks , 1998, ISLPED '98.

[7]  Vivek Tiwari,et al.  Topological analysis for leakage prediction of digital circuits , 2002, Proceedings of ASP-DAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation Conference and 15h International Conference on VLSI Design.