Optimal control and design of hybrid-electric vehicles

The goal of this thesis is to develop novel model-based methods for optimal control and optimal design of hybrid electric vehicles. Two different approaches are used when designing the energy management strategy for two types of parallel hybrid electric vehicles. For the full parallel hybrid a pure mathematical approach is used while an approach derived from optimal sizing studies is used to design the energy management strategy for the torque-assist parallel hybrid. The optimal control problem associated with the energy management in a full parallel hybrid is solved explicitly for a simplified model. The solution of the optimal control problem shows how optimal energy management strategies are derived and that the solution yields simple rules depending on vehicle parameters. Furthermore, a causal, real-time control strategy including anti-windup is presented. The novel energy management for the torque-assist hybrid shows that the gear shifting control can be separated from the torque split control. The energy management strategy utilizes the gear shifting strategy for control of the energy flows while the torque split strategy is given by a simple rule. Results show that the proposed energy management strategy achieves a fuel consumption within 1% from the global optimum for most driving cycles. Furthermore, the results are not sensitive to limitations and energy losses associated with gear shifting. Both the full and the torque-assist parallel hybrid vehicles are optimized with respect to the component dimensions. The overall power-to-weight ratio is kept constant while the hybridization ratio is optimized and investigated for the full hybrid and the torque-assist hybrid. The study shows the non-intuitive result that the need for hybridization is larger in the torque-assist hybrid than in the full hybrid. The simplicity of the torque-assist hybrid allows the optimal hybridization ratio to be found using a very simple and computationally cheap rule. The objective of this rule is to minimize the total CO2 emissions of the vehicle, while maintaining its drivability at a constant level. The starting point is an analysis in which the optimal energy management strategy is found for eight typical driving cycles using dynamic programming. Analyzing these results, a simple yet powerful rule-based method is proposed that allows choosing the sizes of the combustion engine and of the electric motor such that the CO2 emissions are very close to the minimum value, i.e., with a deviation of less than 1% for most driving cycles. In the last chapter of this thesis the focus is on the dynamic programming algorithm. Issues related to the implementation of the dynamic programming algorithm for optimal control of a one-dimensional dynamic model is investigated. A study on the resolution of the discretized state space emphasizes the need for careful implementation. A novel method is presented to treat numerical issues appropriately. In particular, the method deals with numerical problems that arise due to high gradients in the optimal cost-to-go function. These gradients mainly occur on the border of the feasible state region. The proposed method not only enhances the accuracy of the solution but also allows for a reduction of the state-space resolution with maintained accuracy. The latter substantially reduces the computational effort to calculate the global optimum. Finally, the improved dynamic programming algorithm is summarized and implemented in a general, public Matlab function. Das Ziel dieser Arbeit ist die Entwicklung neuer, modellbasierter Methoden fur die optimale Regelung und Auslegung von elektrischen Hybridfahrzeugen. Zwei verschiedene Ansatze werden angewandt fur die Entwicklung des Energiemanagements fur zwei Typen von parallelen elektrischen Hybridfahrzeugen. Fur den Fall eines Vollhybridfahrzeuges wird ein rein mathematischer Ansatz angewandt, wahrend das Energiemanagement fur ein mildes Hybridfahrzeug aus Studien der optimalen Auslegung abgeleitet wird. Das Optimal Control Problem fur das Energiemanagement von parallelen Vollhybridfahrzeugen wird explizit gelost fur ein vereinfachtes Modell. Diese Losung zeigt auf, wie optimale Energiemanagementstrategien hergeleitet werden und dass die resultierenden Losungen einfache Regeln darstellen, welche durch die Fahrzeugparameter definiert sind. Desweiteren wird eine darauf basierende kausale Echtzeitstrategiemit Anti-Windup hergeleitet. Ein neuartiges Energiemanagement fur milde Hybridfahrzeuge zeigt auf, dass die Gangwahl von der Regelung der Momentenaufteilung separiert werden kann. Dieses Energiemanagement verwendet die Gangwahl zur Steuerung der Energieflusse wahrend die Momentenaufteilung durch einfache Regeln vorgegeben wird. Die Resultate zeigen, dass dieses Energiemanagement Treibstoffverbrauche erzielt, welche fur die meisten Fahrzyklen weniger als 1% Abweichung vom globalen Optimum aufweisen. Die erzielten Resultate sind insensitiv bezuglich Beschrankungen und energetischen Verlusten bei Gangschaltvorgangen. Sowohl das Voll- wie auch das Mildhyridfahrzeug werden bezuglich Komponentendimensionierung optimiert. Das Leistungs/Gewichts-Verhaltnis wird konstant gehalten wahrend der Hybridisierungsgrad optimiert wird. Der Unterschied zwischen optimalem Hybridisierungsgrad fur Vollbeziehungsweise Mildhybridfahrzeug wird untersucht. Die Resultate zeigen uberaschenderweise, dass milde Hybridfahrzeuge hohere optimale Hybridisierungsgrade benotigen als Vollhybridfahrzeuge. Die Einfachheit von milden Hybriden erlaubt den optimalen Hybridisierungsgradmittels einer sehr einfachen und rechnerisch effizienten Regel zu finden. Das Ziel dieser Regel ist die Minimierung der totalen CO2 Emissionen des Fahrzeuges, wobei die Fahrleistungen konstant gehalten werden. Ausgangspunkt ist eine Analyse, in welcher die optimale Energiemanagementstrategie mittels Dynamischer Programmierung fur acht typische Fahrzyklen ausgewertet wird. Die Untersuchung dieser Resultate erlaubt die Herleitung einer einfachen, aber effektiven Methode, die es erlaubt, die Dimensionierung des Verbrennungsmotors und des Elektromotors so zu wahlen, dass die CO2 Emissionen sehr nahe beim Minimum liegen. Die Abweichungen sind kleiner als 1% fur die meisten Fahrzyklen. Das letzte Kapitel dieser Arbeit fokussiert auf den Algorithmus der Dynamischen Programmierung. Probleme bezuglich der Implementierung der Dynamischen Programmierung fur eindimensionale Optimal Control Probleme werden untersucht. Eine Studie der Auflosung des diskretisierten Zustandsraumes verdeutlicht die Notwendigkeit einer exakten Implementierung. Eine neue Methode wird vorgestellt, die es erlaubt, diese numerischen Probleme korrekt zu behandeln. Die Methode behandelt numerische Probleme, die aufgrund grosser Gradienten in der optimalen Restkostenfunktion auftreten. Diese Gradienten treten meist am Rand des losbaren Zustandsraumes auf. Die vorgestellte Methode verbessert nicht nur die Genauigkeit des gefundenen Losungen, sondern sie erlaubt auch die Auflosung des Zustandsraumes zu reduzieren bei gleicher Genauigkeit wie im ursprunglichen Problem. Diese Reduktion der Auflosung reduziert den Rechenaufwand fur die Auswertung des globalen Optimums wesentlich. Der verbesserte Algorithmus der Dynamischen Programmierung wird letztlich zusammengefasst und in einer Matlabfunktion implementiert.

[1]  Lino Guzzella,et al.  On Implementation of Dynamic Programming for Optimal Control Problems with Final State Constraints , 2010 .

[2]  Lino Guzzella,et al.  Introduction to Modeling and Control of Internal Combustion Engine Systems , 2004 .

[3]  L. Triger,et al.  Hybrid vehicle engine size optimization , 1993 .

[4]  Mehrdad Ehsani,et al.  An energy management and charge sustaining strategy for a parallel hybrid vehicle with CVT , 2005, IEEE Transactions on Control Systems Technology.

[5]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[6]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[7]  G Y Liao,et al.  Modelling and analysis of powertrain hybridization on all-wheel-drive sport utility vehicles , 2004 .

[8]  T. C. Moore HEV control strategy: implications of performance criteria, system configuration and design, and component selection , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[9]  Giorgio Rizzoni,et al.  General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles , 2001 .

[10]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[11]  S. J. Pachernegg,et al.  A Closer Look at the Willans-Line , 1969 .

[12]  Huei Peng,et al.  Power management strategy for a parallel hybrid electric truck , 2003, IEEE Trans. Control. Syst. Technol..

[13]  Huei Peng,et al.  Energy management strategy for a parallel hybrid electric truck , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[14]  Lino Guzzella,et al.  Optimal Hybridization in Two Parallel Hybrid Electric Vehicles using Dynamic Programming , 2008 .

[15]  Thierry-Marie Guerra,et al.  Optimal control of a parallel powertrain: from global optimization to real time control strategy , 2002, Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367).

[16]  Anna G. Stefanopoulou,et al.  Optimum Battery Size for Fuel Cell Hybrid Electric Vehicle— Part I , 2007 .

[17]  Xiaolin Hu,et al.  Multi-Objective Optimization of HEV Fuel Economy and Emissions using Evolutionary Computation , 2004 .

[18]  Alois Amstutz,et al.  CAE tools for quasi-static modeling and optimization of hybrid powertrains , 1999 .

[19]  U Zoelch,et al.  Dynamic optimization method for design and rating of the components of a hybrid vehicle , 2014 .

[20]  Yi Zhang,et al.  Shift dynamics and control of dual-clutch transmissions , 2007 .

[21]  Reza Langari,et al.  Intelligent energy management agent for a parallel hybrid vehicle-part II: torque distribution, charge sustenance strategies, and performance results , 2005, IEEE Transactions on Vehicular Technology.

[22]  Lino Guzzella,et al.  Optimal control of parallel hybrid electric vehicles , 2004, IEEE Transactions on Control Systems Technology.

[23]  Mutasim A. Salman,et al.  Energy management strategies for parallel hybrid vehicles using fuzzy logic , 2000 .

[24]  J. Gover,et al.  Optimizing the Hybridization Factor for a Parallel Hybrid Electric Small Car , 2006, 2006 IEEE Vehicle Power and Propulsion Conference.

[25]  Hong Jiang,et al.  Dynamic Modeling and Simulation of a Dual-Clutch Automated Lay-Shaft Transmission , 2005 .

[26]  Gregory N. Washington,et al.  Mechatronic design and control of hybrid electric vehicles , 2000 .

[27]  Vadim I. Utkin,et al.  Model-Based Fuel Optimal Control of Hybrid Electric Vehicle Using Variable Structure Control Systems , 2004 .

[28]  X.-J. Mao,et al.  Parallel hybrid electric system energy optimization control with automated mechanical transmission , 2009 .

[29]  Srdjan M. Lukic,et al.  Effects of drivetrain hybridization on fuel economy and dynamic performance of parallel hybrid electric vehicles , 2004, IEEE Transactions on Vehicular Technology.

[30]  Thierry Marie Guerra,et al.  Simulation and assessment of power control strategies for a parallel hybrid car , 2000 .

[31]  Lino Guzzella,et al.  A Causal Operation Strategy for Hybrid Electric Vehicles based on Optimal Control Theory , 2007 .

[32]  Philippe Moulin,et al.  Towards Integrated Powertrain Control for a Mild-Hybrid Urban Vehicle with a Downsized Turbo-Charged CNG Engine , 2007 .

[33]  Milner B. Schaefer Some aspects of the dynamics of populations important to the management of the commercial marine fisheries , 1991 .

[34]  Giorgio Rizzoni,et al.  Optimal energy management in series hybrid electric vehicles , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[35]  Olle Sundström,et al.  A Transmission-Actuated Energy-Management Strategy , 2010, IEEE Transactions on Vehicular Technology.

[36]  Keith Wipke,et al.  ANALYSIS OF THE FUEL ECONOMY BENEFIT OF DRIVETRAIN HYBRIDIZATION , 1997 .

[37]  Michel André,et al.  The ARTEMIS European driving cycles for measuring car pollutant emissions. , 2004, The Science of the total environment.

[38]  Lino Guzzella,et al.  Vehicle Propulsion Systems: Introduction to Modeling and Optimization , 2005 .

[39]  Hyun-Soo Kim,et al.  Optimization of control strategy for a single-shaft parallel hybrid electric vehicle , 2007 .

[40]  Lino Guzzella,et al.  Discrete-Event IC Engine Models: Why the Constant Speed Assumption is Valid , 2003 .

[41]  Huei Peng,et al.  Combined control/plant optimization of fuel cell hybrid vehicles , 2006, 2006 American Control Conference.

[42]  Adolf Hermann Glattfelder,et al.  Control Systems with Input and Output Constraints , 2003 .

[43]  Alfredo Vaccaro,et al.  A genetic-based methodology for hybrid electric vehicles sizing , 2001, Soft Comput..

[44]  Roberto Cipollone,et al.  Analysis of the potential performance of a combined hybrid vehicle with optimal supervisory control , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[45]  Olle Sundström,et al.  A generic dynamic programming Matlab function , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[46]  Danilo J. Santini,et al.  HYBRID OPTIONS FOR LIGHT-DUTY VEHICLES , 1999 .

[47]  Stephan Terwen,et al.  Predictive Powertrain Control for Hybrid Electric Vehicles , 2004 .

[48]  R. C. Baraszu,et al.  Torque fill-in for an automated shift manual transmission in a parallel hybrid electric vehicle , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[49]  Giorgio Rizzoni,et al.  A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[50]  Seung-Ki Sul,et al.  Advanced gear-shifting and clutching strategy for a parallel-hybrid vehicle , 2000 .

[51]  Dongho Kim,et al.  Optimal power distribution control for parallel hybrid electric vehicles , 2005, IEEE International Conference on Vehicular Electronics and Safety, 2005..

[52]  Pierluigi Pisu,et al.  A Comparative Study Of Supervisory Control Strategies for Hybrid Electric Vehicles , 2007, IEEE Transactions on Control Systems Technology.

[53]  L. Guzzella,et al.  Control of hybrid electric vehicles , 2007, IEEE Control Systems.

[54]  A. Engstle,et al.  Factor of hybridization as a design parameter for hybrid vehicles , 2006, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006..

[55]  Lino Guzzella,et al.  Predictive Reference Signal Generator for Hybrid Electric Vehicles , 2009, IEEE Transactions on Vehicular Technology.

[56]  Olle Sundström,et al.  Torque-Assist Hybrid Electric Powertrain Sizing: From Optimal Control Towards a Sizing Law , 2010, IEEE Transactions on Control Systems Technology.

[57]  Anant D Vyas,et al.  Hybridizing with Engine Power Reduction , 2002 .