Laminar-specific cortical dynamics in human visual and sensorimotor cortices

Lower frequency, feedback, activity in the alpha and beta range is thought to predominantly originate from infragranular cortical layers, whereas feedforward signals in the gamma range stem largely from supragranular layers. Distinct anatomical and spectral channels may therefore play specialized roles in communication within hierarchical cortical networks; however, empirical evidence for this organization in humans is limited. We leverage high precision MEG to test this proposal, directly and non-invasively, in human participants during visually guided actions. Visual alpha activity mapped onto deep cortical laminae, whereas visual gamma activity predominantly arose from superficial laminae. This laminar-specificity was echoed in sensorimotor beta and gamma activity. Visual gamma activity scaled with task demands in a way compatible with feedforward signaling. For sensorimotor activity, we observed a more complex relationship with feedback and feedforward processes. Distinct frequency channels thus operate in a laminar-specific manner, but with dissociable functional roles across sensory and motor cortices.

[1]  M. Kawato,et al.  Attentional shifts towards an expected visual target alter the level of alpha-band oscillatory activity in the human calcarine cortex. , 2005, Brain research. Cognitive brain research.

[2]  Robert Oostenveld,et al.  Localizing human visual gamma-band activity in frequency, time and space , 2006, NeuroImage.

[3]  Tatiana Pasternak,et al.  Common Rules Guide Comparisons of Speed and Direction of Motion in the Dorsolateral Prefrontal Cortex , 2013, The Journal of Neuroscience.

[4]  C. Schroeder,et al.  Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations , 2011, The Journal of Neuroscience.

[5]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[6]  E. Halgren,et al.  The generation and propagation of the human alpha rhythm , 2017, Proceedings of the National Academy of Sciences.

[7]  S. Jones,et al.  Distinguishing mechanisms of gamma frequency oscillations in human current source signals using a computational model of a laminar neocortical network , 2013, Front. Hum. Neurosci..

[8]  Luc H. Arnal,et al.  Transitions in neural oscillations reflect prediction errors generated in audiovisual speech , 2011, Nature Neuroscience.

[9]  K. Uğurbil,et al.  Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1 , 2012, PloS one.

[10]  G. Nolte The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. , 2003, Physics in medicine and biology.

[11]  Timothy D. Hanks,et al.  Microstimulation of macaque area LIP affects decision-making in a motion discrimination task , 2006, Nature Neuroscience.

[12]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[13]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[14]  Suresh D Muthukumaraswamy,et al.  Functional properties of human primary motor cortex gamma oscillations. , 2010, Journal of neurophysiology.

[15]  Nikolaus Weiskopf,et al.  Flexible head-casts for high spatial precision MEG , 2017, Journal of Neuroscience Methods.

[16]  C. Schroeder,et al.  Neuronal Mechanisms of Cortical Alpha Oscillations in Awake-Behaving Macaques , 2008, The Journal of Neuroscience.

[17]  Sylvain Baillet,et al.  Magnetoencephalography for brain electrophysiology and imaging , 2017, Nature Neuroscience.

[18]  R. Lesser,et al.  Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. , 1998, Brain : a journal of neurology.

[19]  Thomas R. Knösche,et al.  A Realistic Neural Mass Model of the Cortex with Laminar-Specific Connections and Synaptic Plasticity – Evaluation with Auditory Habituation , 2013, PloS one.

[20]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[21]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[22]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[23]  G. Pfurtscheller,et al.  Motor imagery activates primary sensorimotor area in humans , 1997, Neuroscience Letters.

[24]  S Taulu,et al.  Artifact and head movement compensation in MEG. , 2007, Neurology, neurophysiology, and neuroscience.

[25]  Ned Jenkinson,et al.  Dynamic Neural Correlates of Motor Error Monitoring and Adaptation during Trial-to-Trial Learning , 2014, The Journal of Neuroscience.

[26]  Eric Larson,et al.  Improving spatial localization in MEG inverse imaging by leveraging intersubject anatomical differences , 2014, Front. Neurosci..

[27]  R. Hari,et al.  Human cortical oscillations: a neuromagnetic view through the skull , 1997, Trends in Neurosciences.

[28]  R. Romo,et al.  Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making , 2011, Proceedings of the National Academy of Sciences.

[29]  Nikolaus Weiskopf,et al.  Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation , 2013, Front. Neurosci..

[30]  John C. Rothwell,et al.  Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex and the Pre-SMA Alter Drift Rate and Response Thresholds Respectively During Perceptual Decision-Making , 2016, Brain Stimulation.

[31]  Miles A Whittington,et al.  A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex , 2006, Proceedings of the National Academy of Sciences.

[32]  Y. Dan,et al.  Layer-specific network oscillation and spatiotemporal receptive field in the visual cortex , 2009, Proceedings of the National Academy of Sciences.

[33]  David G. Norris,et al.  Combining EEG and fMRI to investigate the post-movement beta rebound , 2006, NeuroImage.

[34]  Leslie G. Ungerleider,et al.  Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Michael X Cohen,et al.  Where Does EEG Come From and What Does It Mean? , 2017, Trends in Neurosciences.

[36]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[37]  Fiona E. N. LeBeau,et al.  Cholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro , 2010, Front. Neural Circuits.

[38]  S. Jones When brain rhythms aren't ‘rhythmic’: implication for their mechanisms and meaning , 2016, Current Opinion in Neurobiology.

[39]  P. Derambure,et al.  Does post-movement beta synchronization reflect an idling motor cortex? , 2001, Neuroreport.

[40]  Miles A. Whittington,et al.  Top-Down Beta Rhythms Support Selective Attention via Interlaminar Interaction: A Model , 2013, PLoS Comput. Biol..

[41]  Antoine Lutti,et al.  High precision anatomy for MEG , 2014, NeuroImage.

[42]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[43]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[44]  C. Moore,et al.  Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice , 2016, Proceedings of the National Academy of Sciences.

[45]  Karl J. Friston,et al.  Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM , 2014, NeuroImage.

[46]  Gareth R. Barnes,et al.  Non-invasive laminar inference with MEG: Comparison of methods and source inversion algorithms , 2017 .

[47]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[48]  Fiona E. N. LeBeau,et al.  Multiple origins of the cortical gamma rhythm , 2011, Developmental neurobiology.

[49]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[50]  I. Stanford,et al.  Pharmacologically induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro , 2008, Neuroscience.

[51]  Á. Pascual-Leone,et al.  α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection , 2006, The Journal of Neuroscience.

[52]  A. Labarga,et al.  Gamma band activity in an auditory oddball paradigm studied with the wavelet transform , 2001, Clinical Neurophysiology.

[53]  Anne-Lise Giraud,et al.  The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex , 2014, Nature Communications.

[54]  Stefan Debener,et al.  Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response , 2004, Clinical Neurophysiology.

[55]  Paul Ferrari,et al.  MEG studies of motor cortex gamma oscillations: evidence for a gamma “fingerprint” in the brain? , 2013, Front. Hum. Neurosci..

[56]  Gareth R. Barnes,et al.  Practical constraints on estimation of source extent with MEG beamformers , 2011, NeuroImage.

[57]  Amir Shmuel,et al.  Laminar Distribution of Phase-Amplitude Coupling of Spontaneous Current Sources and Sinks , 2015, Front. Neurosci..

[58]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[59]  Luc H. Arnal,et al.  Cortical oscillations and sensory predictions , 2012, Trends in Cognitive Sciences.

[60]  E. Maris,et al.  Prior Expectation Mediates Neural Adaptation to Repeated Sounds in the Auditory Cortex: An MEG Study , 2011, The Journal of Neuroscience.

[61]  Richard Bowtell,et al.  Combining EEG and fMRI. , 2011, Methods in molecular biology.

[62]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[63]  Gareth R. Barnes,et al.  Non-invasive laminar inference with MEG: Comparison of methods and source inversion algorithms , 2017, NeuroImage.

[64]  Antoine Lutti,et al.  Discrimination of cortical laminae using MEG , 2014, NeuroImage.

[65]  M. Corbetta,et al.  Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions , 2008, Nature Neuroscience.

[66]  D. Leopold,et al.  Layer-Specific Entrainment of Gamma-Band Neural Activity by the Alpha Rhythm in Monkey Visual Cortex , 2012, Current Biology.

[67]  Pascal Fries,et al.  Cortical layers, rhythms and BOLD signals , 2017, NeuroImage.

[68]  Xiao-Jing Wang,et al.  Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex , 2016, Science Advances.

[69]  Michael Breakspear,et al.  The reorganization of corticomuscular coherence during a transition between sensorimotor states , 2014, NeuroImage.

[70]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[71]  Andreas K. Engel,et al.  Buildup of Choice-Predictive Activity in Human Motor Cortex during Perceptual Decision Making , 2009, Current Biology.

[72]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[73]  D. Norris,et al.  Layer‐specific BOLD activation in human V1 , 2010, Human brain mapping.

[74]  M. Siegel,et al.  A framework for local cortical oscillation patterns , 2011, Trends in Cognitive Sciences.

[75]  Paul Ferrari,et al.  Self-paced movements induce high-frequency gamma oscillations in primary motor cortex , 2008, NeuroImage.

[76]  Adam Kohn,et al.  Laminar dependence of neuronal correlations in visual cortex. , 2013, Journal of neurophysiology.

[77]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[78]  Paul Tiesinga,et al.  Oscillatory mechanisms of feedforward and feedback visual processing , 2015, Trends in Neurosciences.

[79]  Roshan Cools,et al.  Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities , 2014, NeuroImage.

[80]  Manuel Schabus,et al.  A shift of visual spatial attention is selectively associated with human EEG alpha activity , 2005, The European journal of neuroscience.

[81]  H. Lau,et al.  Prestimulus Oscillatory Activity over Motor Cortex Reflects Perceptual Expectations , 2013, The Journal of Neuroscience.

[82]  G. Rizzolatti,et al.  Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey , 1991, The Journal of comparative neurology.

[83]  Mark W. Woolrich,et al.  Using generative models to make probabilistic statements about hippocampal engagement in MEG , 2017, NeuroImage.

[84]  K. Uutela,et al.  Detecting and Correcting for Head Movements in Neuromagnetic Measurements , 2001, NeuroImage.

[85]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[86]  Daeyeol Lee,et al.  Beyond working memory: the role of persistent activity in decision making , 2010, Trends in Cognitive Sciences.

[87]  F. D. Lange,et al.  Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback , 2016, Current Biology.

[88]  M. Bozkurt,et al.  Functional anatomy. , 1980, Equine veterinary journal.

[89]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[90]  Matthias M. Müller,et al.  Visually induced gamma-band responses in human electroencephalographic activity — a link to animal studies , 1996, Experimental Brain Research.

[91]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[92]  Klaas E. Stephan,et al.  Laminar fMRI and computational theories of brain function , 2017, NeuroImage.

[93]  Xiaolin Huo,et al.  Gamma oscillations in the primary motor cortex studied with MEG , 2010, Brain and Development.

[94]  Alan C. Evans,et al.  Measurement of Cortical Thickness Using an Automated 3-D Algorithm: A Validation Study , 2001, NeuroImage.

[95]  Timothy P. L. Roberts,et al.  Relating MEG measured motor cortical oscillations to resting γ-Aminobutyric acid (GABA) concentration , 2011, NeuroImage.

[96]  Chun-I Yeh,et al.  Laminar analysis of visually evoked activity in the primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[97]  P. Brown,et al.  Post-Movement Beta Activity in Sensorimotor Cortex Indexes Confidence in the Estimations from Internal Models , 2016, The Journal of Neuroscience.

[98]  Gareth R. Barnes,et al.  The use of anatomical constraints with MEG beamformers , 2003, NeuroImage.

[99]  Jessica A. Cardin,et al.  A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior , 2011, Molecular Psychiatry.

[100]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[101]  Michael T. Jurkiewicz,et al.  Post-movement beta rebound is generated in motor cortex: Evidence from neuromagnetic recordings , 2006, NeuroImage.

[102]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[103]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[104]  P. Fries Rhythms for Cognition: Communication through Coherence , 2015, Neuron.

[105]  P Berg,et al.  A multiple source approach to the correction of eye artifacts. , 1994, Electroencephalography and clinical neurophysiology.

[106]  Alan C. Evans,et al.  Cortical thickness analysis examined through power analysis and a population simulation , 2005, NeuroImage.

[107]  G. R. Barnes,et al.  A Quantitative Assessment of the Sensitivity of Whole-Head MEG to Activity in the Adult Human Cortex , 2002, NeuroImage.

[108]  Nikolaus Weiskopf,et al.  An evaluation of prospective motion correction (PMC) for high resolution quantitative MRI , 2015, Front. Neurosci..

[109]  John H. Reynolds,et al.  Laminar Organization of Attentional Modulation in Macaque Visual Area V4 , 2017, Neuron.

[110]  Krish D. Singh,et al.  Visual gamma oscillations: The effects of stimulus type, visual field coverage and stimulus motion on MEG and EEG recordings , 2013, NeuroImage.

[111]  I. Aharon,et al.  Three‐dimensional mapping of cortical thickness using Laplace's Equation , 2000, Human brain mapping.

[112]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[113]  R. Hari,et al.  Functional Segregation of Movement-Related Rhythmic Activity in the Human Brain , 1995, NeuroImage.

[114]  Hubert Preissl,et al.  Source Reconstruction Accuracy of MEG and EEG Bayesian Inversion Approaches , 2012, PloS one.

[115]  Henry Kennedy,et al.  Cortical High-Density Counterstream Architectures , 2013, Science.

[116]  Saskia Haegens,et al.  Laminar Profile and Physiology of the α Rhythm in Primary Visual, Auditory, and Somatosensory Regions of Neocortex , 2015, The Journal of Neuroscience.

[118]  J. Schall,et al.  Microcircuitry of Performance Monitoring , 2017, bioRxiv.

[119]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[120]  Claus C. Hilgetag,et al.  Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex , 2006, PLoS Comput. Biol..

[121]  Karl J. Friston,et al.  Predictive coding under the free-energy principle , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[122]  J. Finsterbusch,et al.  Optimization and Validation of Methods for Mapping of the Radiofrequency Transmit Field at 3T , 2010, Magnetic resonance in medicine.

[123]  O. Josephs,et al.  Robust and Fast Whole Brain Mapping of the RF Transmit Field B1 at 7T , 2012, PloS one.

[124]  A. Engel,et al.  Beta-band oscillations—signalling the status quo? , 2010, Current Opinion in Neurobiology.

[125]  Karl J. Friston,et al.  Linking canonical microcircuits and neuronal activity: Dynamic causal modelling of laminar recordings , 2017, NeuroImage.

[126]  Karl J. Friston,et al.  Predictions not commands: active inference in the motor system , 2012, Brain Structure and Function.

[127]  Leslie G. Ungerleider,et al.  A general mechanism for perceptual decision-making in the human brain , 2004, Nature.

[128]  M. D’Esposito,et al.  The functional anatomy of a perceptual decision in the human brain. , 2010, Journal of neurophysiology.

[129]  Flavie Torrecillos,et al.  Distinct Modulations in Sensorimotor Postmovement and Foreperiod β-Band Activities Related to Error Salience Processing and Sensorimotor Adaptation , 2015, The Journal of Neuroscience.

[130]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[131]  Nikolaus Weiskopf,et al.  Using high-resolution quantitative mapping of R1 as an index of cortical myelination , 2014, NeuroImage.

[132]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[133]  P S Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. , 1995, Cerebral cortex.

[134]  G. Pfurtscheller,et al.  Post-movement beta synchronization. A correlate of an idling motor area? , 1996, Electroencephalography and clinical neurophysiology.