Shale fault zone structure and stress dependent anisotropic permeability and seismic velocity properties (Opalinus Clay, Switzerland)

[1]  F. Amann,et al.  A comparative study on methods for determining the hydraulic properties of a clay shale , 2020 .

[2]  M. Mazzotti,et al.  Fault sealing and caprock integrity for CO2 storage: an in situ injection experiment , 2020, Solid Earth.

[3]  J. Rutqvist,et al.  Complexity of Fault Rupture and Fluid Leakage in Shale: Insights From a Controlled Fault Activation Experiment , 2020, Journal of Geophysical Research: Solid Earth.

[4]  Y. Guglielmi,et al.  Slip perturbation during fault reactivation by a fluid injection , 2019, Tectonophysics.

[5]  L. Giosan,et al.  Reconciling drainage and receiving basin signatures of the Godavari River system , 2018, Biogeosciences.

[6]  C. Madonna,et al.  Permeability and seismic velocity anisotropy across a ductile–brittle fault zone in crystalline rock , 2018, Solid Earth.

[7]  C. Collettini,et al.  Frictional Properties of Opalinus Clay: Implications for Nuclear Waste Storage , 2018 .

[8]  C. Vollmer,et al.  Deformation mechanisms and evolution of the microstructure of gouge in the Main Fault in Opalinus Clay in the Mont Terri rock laboratory (CH) , 2017 .

[9]  D. Jaeggi,et al.  Comparative study of methods to estimate hydraulic parameters in the hydraulically undisturbed Opalinus Clay (Switzerland) , 2017, Swiss Journal of Geosciences.

[10]  V. Dietze,et al.  Litho- and biostratigraphy of the Opalinus Clay and bounding formations in the Mont Terri rock laboratory (Switzerland) , 2017, Swiss Journal of Geosciences.

[11]  F. Amann,et al.  High-resolution mini-seismic methods applied in the Mont Terri rock laboratory (Switzerland) , 2017, Swiss Journal of Geosciences.

[12]  Peter Connolly,et al.  Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments , 2017, Swiss Journal of Geosciences.

[13]  F. Amann,et al.  The response of Opalinus Clay when exposed to cyclic relative humidity variations , 2016 .

[14]  Q. Wenning,et al.  Seismic anisotropy in mid to lower orogenic crust: Insights from laboratory measurements of Vp and Vs in drill core from central Scandinavian Caledonides , 2016 .

[15]  C. Nussbaum,et al.  Microstructures and deformation mechanisms in Opalinus Clay: insights from scaly clay from the Main Fault in the Mont Terri Rock Laboratory (CH) , 2016 .

[16]  Katrin M. Wild Evaluation of the hydro-mechanical properties and behavior of Opalinus Clay , 2016 .

[17]  Russell T. Ewy,et al.  Shale/claystone response to air and liquid exposure, and implications for handling, sampling and testing , 2015 .

[18]  Nicola Doebelin,et al.  Profex: a graphical user interface for the Rietveld refinement program BGMN , 2015, Journal of applied crystallography.

[19]  D. Faulkner,et al.  Development and maintenance of fluid overpressures in crustal fault zones by elastic compaction and implications for earthquake swarms , 2015 .

[20]  F. Amann,et al.  Water Retention Characteristics and State-Dependent Mechanical and Petro-Physical Properties of a Clay Shale , 2015, Rock Mechanics and Rock Engineering.

[21]  D. Ferrill,et al.  Faulting and fracturing in shale and self-sourced reservoirs: Introduction , 2014 .

[22]  C. Vollmer,et al.  Microstructural evolution of an incipient fault zone in Opalinus Clay: Insights from an optical and electron microscopic study of ion-beam polished samples from the Main Fault in the Mt-Terri Underground Research Laboratory , 2014 .

[23]  D. Dewhurst,et al.  Elastic anisotropy of Opalinus Clay under variable saturation and triaxial stress , 2014 .

[24]  R. Ewy Shale swelling/shrinkage and water content change due to imposed suction and due to direct brine contact , 2014 .

[25]  Q. Wenning,et al.  Mechanical Characterization in Unconventional Reservoirs: A Facies-Based Methodology , 2013 .

[26]  H. Fossen,et al.  Growth of normal faults in multilayer sequences: A 3D seismic case study from the Egersund Basin, Norwegian North Sea , 2013 .

[27]  M. Zoback,et al.  Mechanical properties of shale-gas reservoir rocks — Part 1: Static and dynamic elastic properties and anisotropy , 2013 .

[28]  R. Allmendinger,et al.  Structural Geology Algorithms: Vectors and Tensors , 2012 .

[29]  Christophe Nussbaum,et al.  Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland) , 2011 .

[30]  P. Gillespie,et al.  Sub-seismic fractures in foreland fold and thrust belts: insight from the Lurestan Province, Zagros Mountains, Iran , 2011 .

[31]  Valentin Gischig,et al.  Experimental Study of the Brittle Behavior of Clay shale in Rapid Unconfined Compression , 2011 .

[32]  Harold Tobin,et al.  Hydrogeology and Mechanics of Subduction Zone Forearcs: Fluid Flow and Pore Pressure , 2011 .

[33]  L. Diamond,et al.  Potential for deep geological sequestration of CO2 in Switzerland: a first appraisal , 2010 .

[34]  Zoe K. Shipton,et al.  A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones , 2010 .

[35]  M. Jobmann,et al.  Investigation of damage-induced permeability of Opalinus clay , 2010 .

[36]  S. Siegesmund,et al.  Influence of carbonate microfabrics on the failure strength of claystones , 2009 .

[37]  J. Walsh,et al.  Outcrop Studies of Shale Smears on Fault Surface , 2009 .

[38]  J. Cartwright,et al.  3D seismic characterisation of an array of blind normal faults in the Levant Basin, Eastern Mediterranean , 2008 .

[39]  H. Wenk,et al.  Anisotropy in shale from Mont Terri , 2008 .

[40]  C. Wibberley,et al.  Recent advances in the understanding of fault zone internal structure: a review , 2008 .

[41]  M. Mazurek,et al.  Unravelling the multi‐stage burial history of the Swiss Molasse Basin: integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis , 2006 .

[42]  D. Mccarty,et al.  Structure, petrophysics, and diagenesis of shale entrained along a normal fault at Black Diamond Mines, California—Implications for fault seal , 2005 .

[43]  C. Sayers Seismic anisotropy of shales , 2005 .

[44]  Paul Marschall,et al.  Characterisation of Gas Transport Properties of the Opalinus Clay, a Potential Host Rock Formation for Radioactive Waste Disposal , 2005 .

[45]  T. Dewers,et al.  Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion? , 2003 .

[46]  G. W. Lanyon,et al.  Measurement of in-situ stress in weak rocks at Mont Terri Rock Laboratory, Switzerland , 2003 .

[47]  B. Clennell,et al.  On the nature of scaly fabric and scaly clay , 2003 .

[48]  F. J. Pearson,et al.  Mont Terri Project - Geochemistry of Water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory-Synthesis Report. , 2003 .

[49]  C. Wibberley,et al.  Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan , 2003 .

[50]  L. Burlini,et al.  Laboratory measurements of seismic P-wave velocities on rocks from the Betic chain (southern Iberian Peninsula) , 2000 .

[51]  E. Screaton,et al.  Fluid flow in accretionary prisms: Evidence for focused, time‐variable discharge , 1998 .

[52]  T. Mukerji,et al.  The Rock Physics Handbook , 1998 .

[53]  B. Freeman,et al.  Quantitative Fault Seal Prediction , 1997 .

[54]  L. Vernik,et al.  Velocity anisotropy in shales: A petrophysical study , 1997 .

[55]  James P. Evans,et al.  Fault zone architecture and permeability structure , 1996 .

[56]  M. Zoback,et al.  Fluid flow along potentially active faults in crystalline rock: Geology , 1995 .

[57]  N. Christensen,et al.  Seismic anisotropy of shales , 1995 .

[58]  R. Krantz Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures , 1991 .

[59]  R. Allmendinger,et al.  Kinematic analysis of fault-slip data , 1990 .

[60]  J. Moore Tectonics and hydrogeology of accretionary prisms: role of the décollement zone , 1989 .

[61]  A. I. Dicker,et al.  A Practical Approach for Determining Permeability From Laboratory Pressure-Pulse Decay Measurements , 1988 .

[62]  L. Thomsen Weak elastic anisotropy , 1986 .

[63]  J. D. Bredehoeft,et al.  A Transient Laboratory Method for Determining the Hydraulic Properties of "Tight"Rocks-I, Theory , 1981 .

[64]  G. Mandl,et al.  The Role Of Faults In Hydrocarbon Migration And Trapping In Nigerian Growth Fault Structures , 1978 .

[65]  J. Tchalenko Similarities between Shear Zones of Different Magnitudes , 1970 .

[66]  J. B. Walsh,et al.  Permeability of granite under high pressure , 1968 .

[67]  A. Skempton Some Observations On Tectonic Shear Zones , 1966 .

[68]  L. Aylmore,et al.  Domain or Turbostratic Structure of Clays , 1960, Nature.

[69]  F. Birch The velocity of compressional waves in rocks to 10 kilobars: 1. , 1960 .

[70]  L. Klinkenberg The Permeability Of Porous Media To Liquids And Gases , 2012 .