Consistency of Markov chain quasi-Monte Carlo on continuous state spaces
暂无分享,去创建一个
[1] H. Lebesgue,et al. Intégrale, Longueur, Aire , 1902 .
[2] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[4] D. J. Finney,et al. The estimation from individual records of the relationship between dose and quantal response. , 1947, Biometrika.
[5] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[6] Art B Owen,et al. A quasi-Monte Carlo Metropolis algorithm. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[7] J. Liao,et al. Variance Reduction in Gibbs Sampler Using Quasi Random Numbers , 1998 .
[8] Josef Dick,et al. On Quasi-Monte Carlo Rules Achieving Higher Order Convergence , 2009 .
[9] Limit theorems for iterated random functions by regenerative methods , 2001 .
[10] Pierre L'Ecuyer,et al. A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains , 2006, Oper. Res..
[11] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[12] P. L'Ecuyer,et al. Quasi-Monte Carlo via linear shift-register sequences , 1999, WSC'99. 1999 Winter Simulation Conference Proceedings. 'Simulation - A Bridge to the Future' (Cat. No.99CH37038).
[13] J. Marsden,et al. Elementary classical analysis , 1974 .
[14] Christiane Lemieux,et al. Acceleration of the Multiple-Try Metropolis algorithm using antithetic and stratified sampling , 2007, Stat. Comput..
[15] Andrew Gelman,et al. Inference from Simulations and Monitoring Convergence , 2011 .
[16] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins , 1916 .
[17] Radford M. Neal. Slice Sampling , 2003, The Annals of Statistics.
[18] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[19] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[20] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[21] David Bruce Wilson,et al. Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.
[22] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[23] Russel E. Caflisch,et al. A quasi-Monte Carlo approach to particle simulation of the heat equation , 1993 .
[24] R. Varga,et al. Proof of Theorem 2 , 1983 .
[25] Anand Srivastav,et al. Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems , 2009, J. Complex..
[26] N. Chentsov. Pseudorandom numbers for modelling Markov chains , 1967 .
[27] Josef Dick. A note on the existence of sequences with small star discrepancy , 2007, J. Complex..
[28] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[29] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[30] Gareth O. Roberts,et al. Convergence Properties of Perturbed Markov Chains , 1998, Journal of Applied Probability.
[31] Persi Diaconis,et al. Iterated Random Functions , 1999, SIAM Rev..
[32] Michael C. Fu,et al. Guest editorial , 2003, TOMC.
[33] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[34] Felix Schlenk,et al. Proof of Theorem 3 , 2005 .
[35] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[36] Joshua N. Cooper,et al. Deterministic Random Walks , 2006, ANALCO.
[37] R. Bass,et al. Review: P. Billingsley, Convergence of probability measures , 1971 .
[38] Art B. Owen,et al. Construction of weakly CUD sequences for MCMC sampling , 2008, 0807.4858.
[39] D. Gaver,et al. Robust empirical bayes analyses of event rates , 1987 .
[40] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[41] Christiane Lemieux,et al. Exact sampling with highly uniform point sets , 2006, Math. Comput. Model..
[42] J. Doob. Stochastic processes , 1953 .
[43] B. V. Limaye,et al. A course in calculus and real analysis , 2006 .
[44] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[45] H. Niederreiter. Multidimensional numerical integration using Pseudorandom numbers , 1986 .
[46] Tobias Friedrich,et al. Deterministic Random Walks on the Two-Dimensional Grid , 2009, Comb. Probab. Comput..
[47] A. Owen. Multidimensional variation for quasi-Monte Carlo , 2004 .
[48] R. D. Gordon. Values of Mills' Ratio of Area to Bounding Ordinate and of the Normal Probability Integral for Large Values of the Argument , 1941 .
[49] R. Ash,et al. Real analysis and probability , 1975 .
[50] I. M. Sobol. Pseudo-random numbers for constructing discrete Markov chains by the Monte Carlo method☆ , 1974 .