Strong Duality in Nonconvex Quadratic Optimization with Two Quadratic Constraints

We consider the problem of minimizing an indefinite quadratic function subject to two quadratic inequality constraints. When the problem is defined over the complex plane we show that strong duality holds and obtain necessary and sufficient optimality conditions. We then develop a connection between the image of the real and complex spaces under a quadratic mapping, which together with the results in the complex case lead to a condition that ensures strong duality in the real setting. Preliminary numerical simulations suggest that for random instances of the extended trust region subproblem, the sufficient condition is satisfied with a high probability. Furthermore, we show that the sufficient condition is always satisfied in two classes of nonconvex quadratic problems. Finally, we discuss an application of our results to robust least squares problems.

[1]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[2]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[3]  Jean B. Lasserre,et al.  Semidefinite Programming vs. LP Relaxations for Polynomial Programming , 2002, Math. Oper. Res..

[4]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[5]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[6]  Paul Pinsler Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen , 1936 .

[7]  W. Gander,et al.  A Constrained Eigenvalue Problem , 1989 .

[8]  J. J. Moré Generalizations of the trust region problem , 1993 .

[9]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[10]  Ya-Xiang Yuan,et al.  A trust region algorithm for equality constrained optimization , 1990, Math. Program..

[11]  Henry Wolkowicz,et al.  Indefinite Trust Region Subproblems and Nonsymmetric Eigenvalue Perturbations , 1995, SIAM J. Optim..

[12]  Ya-Xiang Yuan,et al.  Optimality Conditions for the Minimization of a Quadratic with Two Quadratic Constraints , 1997, SIAM J. Optim..

[13]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[14]  Louis L. Scharf,et al.  Detection and estimation of improper complex random signals , 2005, IEEE Transactions on Information Theory.

[15]  Henry Wolkowicz,et al.  On Lagrangian Relaxation of Quadratic Matrix Constraints , 2000, SIAM J. Matrix Anal. Appl..

[16]  Ya-Xiang Yuan,et al.  On a subproblem of trust region algorithms for constrained optimization , 1990, Math. Program..

[17]  Shuzhong Zhang,et al.  Complex Matrix Decomposition and Quadratic Programming , 2007, Math. Oper. Res..

[18]  Marc Teboulle,et al.  Global Optimality Conditions for Quadratic Optimization Problems with Binary Constraints , 2000, SIAM J. Optim..

[19]  Pascal Chevalier,et al.  Widely linear estimation with complex data , 1995, IEEE Trans. Signal Process..

[20]  G. Golub,et al.  Parameter Estimation in the Presence of Bounded Data Uncertainties , 1998, SIAM J. Matrix Anal. Appl..

[21]  Shuzhong Zhang,et al.  New Results on Quadratic Minimization , 2003, SIAM J. Optim..

[22]  D. Sorensen Newton's method with a model trust region modification , 1982 .

[23]  Shuzhong Zhang,et al.  On Cones of Nonnegative Quadratic Functions , 2003, Math. Oper. Res..

[24]  José Mario Martínez,et al.  Local Minimizers of Quadratic Functions on Euclidean Balls and Spheres , 1994, SIAM J. Optim..

[25]  Marc Teboulle,et al.  Hidden convexity in some nonconvex quadratically constrained quadratic programming , 1996, Math. Program..

[26]  J.-B. Hiriart-Urruty,et al.  Permanently Going Back and Forth between the ``Quadratic World'' and the ``Convexity World'' in Optimization , 2002 .

[27]  A. J. Goldman,et al.  Some geometric results in semidefinite programming , 1995, J. Glob. Optim..

[28]  M. Er Quadratic optimization problems in robust beamforming , 1990 .

[29]  David M. author-Gay Computing Optimal Locally Constrained Steps , 1981 .

[30]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[31]  Boris Polyak Convexity of Quadratic Transformations and Its Use in Control and Optimization , 1998 .

[32]  Yin Zhang,et al.  Computing a Celis-Dennis-Tapia trust-region step for equality constrained optimization , 1992, Math. Program..

[33]  Pascal Chevalier,et al.  Complex linear-quadratic systems for detection and array processing , 1996, IEEE Trans. Signal Process..

[34]  M. R. Celis A TRUST REGION STRATEGY FOR NONLINEAR EQUALITY CONSTRAINED OPTIMIZATION (NONLINEAR PROGRAMMING, SEQUENTIAL QUADRATIC) , 1985 .

[35]  Ya-Xiang Yuan,et al.  On Local Solutions of the Celis--Dennis--Tapia Subproblem , 1999, SIAM J. Optim..

[36]  Henry Wolkowicz,et al.  The trust region subproblem and semidefinite programming , 2004, Optim. Methods Softw..

[37]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[38]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..