Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm

As a structural analogue of the carbon nanotube (CNT), the boron nitride nanotube (BNNT) has become one of the most intriguing non-carbon nanostructures. However, up to now the pre-existing restrictions/limitations of BNNT syntheses have made the progress in their research rather modest. This work presents a new route toward the synthesis of highly pure ultrafine BNNTs based on a modified boron oxide (BO) CVD method. A new effective precursor—a mixture of Li2O and B—has been proposed for the growth of thin, few-layer BNNTs in bulk amounts. The Li2O utilized as the precursor plays the crucial role for the present nanotube growth. The prepared BNNTs have average external diameters of sub-10 nm and lengths of up to tens of µm. Electron energy loss spectrometry and Raman spectroscopy demonstrate the ultimate phase purity of the ultrafine BNNTs. Property studies indicate that the ultrafine nanotubes are perfect electrical insulators exhibiting superb resistance to oxidation and strong UV emission. Moreover, their reduced diameters lead to a dramatically decreased population of defects within the tube walls and result in the observation of near-band-edge (NBE) emission at room temperature.

[1]  H. Zeng,et al.  Recent Advances in Boron Nitride Nanotubes and Nanosheets , 2010 .

[2]  Dmitri Golberg,et al.  Boron nitride nanotubes and nanosheets. , 2010, ACS nano.

[3]  P. T. Lillehei,et al.  Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method , 2009, Nanotechnology.

[4]  S. Tung,et al.  Synthesis of boron nitride nanotubes from boron oxide by ball milling and annealing process , 2009 .

[5]  Y. Bando,et al.  Characterization, cathodoluminescence and field-emission properties of morphology-tunable CdS micro/nanostructures , 2009, 2010 3rd International Nanoelectronics Conference (INEC).

[6]  C. Zhi,et al.  Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature , 2009, Nanotechnology.

[7]  Y. Bando,et al.  Solvothermal Synthesis, Cathodoluminescence, and Field‐Emission Properties of Pure and N‐Doped ZnO Nanobullets , 2009 .

[8]  J. Zou,et al.  Novel boron nitride hollow nanoribbons. , 2008, ACS nano.

[9]  Yun Liu,et al.  Over 1.0 mm-long boron nitride nanotubes , 2008 .

[10]  Seung Min Kim,et al.  Double-walled boron nitride nanotubes grown by floating catalyst chemical vapor deposition. , 2008, Nano letters (Print).

[11]  Dmitri Golberg,et al.  Boron nitride nanotubes: functionalization and composites , 2008 .

[12]  F. Ducastelle,et al.  Near-band-edge recombinations in multiwalled boron nitride nanotubes: Cathodoluminescence and photoluminescence spectroscopy measurements , 2008 .

[13]  T. Sekiguchi,et al.  Effects of specimen preparation on the cathodoluminescence properties of ZnO nanoparticles , 2008 .

[14]  O. Stéphan,et al.  Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique. , 2007, Journal of the American Chemical Society.

[15]  D. Anglos,et al.  Photoluminescence of hexagonal boron nitride: Effect of surface oxidation under UV-laser irradiation , 2007, 0804.0764.

[16]  F. Ducastelle,et al.  Optical properties of multiwall boron nitride nanotubes , 2007 .

[17]  Dmitri Golberg,et al.  Boron Nitride Nanotubes , 2007 .

[18]  Annick Loiseau,et al.  Origin of the excitonic recombinations in hexagonal boron nitride by spatially resolved cathodoluminescence spectroscopy , 2007, 0707.0599.

[19]  Annick Loiseau,et al.  Cathodoluminescence imaging and spectroscopy on a single multiwall boron nitride nanotube , 2007, cond-mat/0703337.

[20]  A. Majumdar,et al.  Isotope effect on the thermal conductivity of boron nitride nanotubes. , 2006, Physical review letters.

[21]  S. Reich,et al.  Raman spectroscopy of single-wall boron nitride nanotubes. , 2006, Nano letters.

[22]  Z. Pan,et al.  Low temperature growth of boron nitride nanotubes on substrates. , 2005, Nano letters.

[23]  C. Zhi,et al.  Effective precursor for high yield synthesis of pure BN nanotubes , 2005 .

[24]  C. Zhi,et al.  Phonon characteristics and cathodolumininescence of boron nitride nanotubes , 2005 .

[25]  Y. Bando,et al.  Fluorination and electrical conductivity of BN nanotubes. , 2005, Journal of the American Chemical Society.

[26]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[27]  Abhijit P. Suryavanshi,et al.  Elastic modulus and resonance behavior of boron nitride nanotubes , 2004 .

[28]  Junqing Hu,et al.  Cathodoluminescence study of one-dimensional free-standing widegap-semiconductor nanostructures: GaN nanotubes, Si3N4 nanobelts and ZnS/Si nanowires. , 2004, Journal of electron microscopy.

[29]  Jin Zou,et al.  Boron nitride nanotubes: Pronounced resistance to oxidation , 2004 .

[30]  J. Gabriel,et al.  Nanococoon seeds for BN nanotube growth , 2003 .

[31]  L. Wirtz,et al.  Ab initio calculations of the lattice dynamics of boron nitride nanotubes , 2003 .

[32]  Ying Chen,et al.  Large-quantity production of high-yield boron nitride nanotubes , 2002 .

[33]  Y. Bando,et al.  A novel precursor for synthesis of pure boron nitride nanotubes. , 2002, Chemical communications.

[34]  M. L. D. L. Chapelle,et al.  Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration , 2001 .

[35]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical review letters.

[36]  Y. Bando,et al.  Synthesis and characterization of ropes made of BN multiwalled nanotubes , 2001 .

[37]  Y. Bando,et al.  MoO3-promoted synthesis of multi-walled BN nanotubes from C nanotube templates , 2000 .

[38]  Y. Matsui,et al.  Long ropes of boron nitride nanotubes grown by a continuous laser heating , 2000 .

[39]  Y. Bando,et al.  SINGLE-WALLED B-DOPED CARBON, B/N-DOPED CARBON AND BN NANOTUBES SYNTHESIZED FROM SINGLE-WALLED CARBON NANOTUBES THROUGH A SUBSTITUTION REACTION , 1999 .

[40]  John D. Fitz Gerald,et al.  A solid-state process for formation of boron nitride nanotubes , 1999 .

[41]  J. Gerald,et al.  Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling , 1999 .

[42]  Y. Bando,et al.  Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction , 1998 .

[43]  Shui-Tong Lee,et al.  Synthesis of Boron nitride nanotubes by means of excimer laser ablation at high temperature , 1998 .

[44]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998, cond-mat/9804226.

[45]  M. Eremets,et al.  Nanotubes in boron nitride laser heated at high pressure , 1996 .

[46]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[47]  F. Willaime,et al.  Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. , 1996, Physical review letters.

[48]  A. Kurdyumov,et al.  Catalytic synthesis of graphite-like boron nitride , 1996 .

[49]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[50]  A. Kurdyumov,et al.  Effect of lithium on structure formation of graphite-like boron nitride with carbothermal synthesis , 1995 .

[51]  S. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[52]  Cohen,et al.  Theory of graphitic boron nitride nanotubes. , 1994, Physical review. B, Condensed matter.

[53]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[54]  R. Paine,et al.  Synthetic routes to boron nitride , 1990 .

[55]  T. Ishii,et al.  Growth of whiskers of hexagonal boron nitride , 1981 .

[56]  P. Gielisse,et al.  Raman spectra of AℓN, cubic BN and BP , 1968 .

[57]  Richard M. Martin,et al.  Light scattering study of boron nitride microcrystals , 1981 .