LBP-guided active contours

This paper investigates novel LBP-guided active contour approaches to texture segmentation. The local binary pattern (LBP) operator is well suited for texture representation, combining efficiency and effectiveness for a variety of applications. In this light, two LBP-guided active contours have been formulated, namely the scalar-LBP active contour (s-LAC) and the vector-LBP active contour (v-LAC). These active contours combine the advantages of both the LBP texture representation and the vector-valued active contour without edges model, and result in high quality texture segmentation. s-LAC avoids the iterative calculation of active contour equation terms derived from textural feature vectors and enables efficient, high quality texture segmentation. v-LAC evolves utilizing regional information encoded by means of LBP feature vectors. It involves more complex computations than s-LAC but it can achieve higher segmentation quality. The computational cost involved in the application of v-LAC can be reduced if it is preceded by the application of s-LAC. The experimental evaluation of the proposed approaches demonstrates their segmentation performance on a variety of standard images of natural textures and scenes.

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  Rachid Deriche,et al.  Active unsupervised texture segmentation on a diffusion based feature space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[3]  Suk Ho Lee,et al.  Level set-based bimodal segmentation with stationary global minimum , 2006, IEEE Transactions on Image Processing.

[4]  Thomas Martin Deserno,et al.  Texture-Adaptive Active Contour Models , 2001, ICAPR.

[5]  Tony F. Chan,et al.  Combining geometrical and textured information to perform image classification , 2006, J. Vis. Commun. Image Represent..

[6]  A. Stein,et al.  Texture-based landform segmentation of LiDAR imagery , 2005 .

[7]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[9]  Mausumi Acharyya,et al.  An adaptive approach to unsupervised texture segmentation using M-Band wavelet transform , 2001, Signal Process..

[10]  Tony F. Chan,et al.  A Level-Set and Gabor-based Active Contour Algorithm for Segmenting Textured Images , 2002 .

[11]  L. Vese,et al.  A Variational Method in Image Recovery , 1997 .

[12]  Chandra Kambhamettu,et al.  A Coarse-to-Fine Deformable Contour Optimization Framework , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Matti Pietikäinen,et al.  Unsupervised texture segmentation using feature distributions , 1997, Pattern Recognit..

[14]  Tony F. Chan,et al.  A logic framework for active contours on multi-channel images , 2005, J. Vis. Commun. Image Represent..

[15]  O. Pujol TEXTURE SEGMENTATION BY STATISTIC DEFORMABLE MODELS , 2003 .

[16]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[17]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[18]  Sergios Theodoridis,et al.  Pattern Recognition, Third Edition , 2006 .

[19]  Joachim M. Buhmann,et al.  A minimum entropy approach to adaptive image polygonization , 2003, IEEE Trans. Image Process..

[20]  Dimitris N. Metaxas,et al.  MetaMorphs: Deformable shape and texture models , 2004, CVPR 2004.

[21]  Rachid Deriche,et al.  Geodesic active regions for supervised texture segmentation , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[22]  Yehoshua Y. Zeevi,et al.  Integrated active contours for texture segmentation , 2006, IEEE Transactions on Image Processing.

[23]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[24]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[25]  Michael Unser,et al.  Nonlinear operators for improving texture segmentation based on features extracted by spatial filtering , 1990, IEEE Trans. Syst. Man Cybern..

[26]  Jerry L. Prince,et al.  Generalized gradient vector flow external forces for active contours , 1998, Signal Process..

[27]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[28]  A. Lynn Abbott,et al.  Active contours on statistical manifolds and texture segmentation , 2005, IEEE International Conference on Image Processing 2005.

[29]  Wen Gao,et al.  Object detection using spatial histogram features , 2006, Image Vis. Comput..

[30]  Kecheng Liu,et al.  Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review , 2002, IEEE Transactions on Information Technology in Biomedicine.

[31]  Georgios Tziritas,et al.  Colour and texture segmentation using wavelet frame analysis, deterministic relaxation, and fast marching algorithms , 2004, J. Vis. Commun. Image Represent..

[32]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Geert M. P. van Kempen,et al.  Supervised segmentation of textures in backscatter images , 2002, Object recognition supported by user interaction for service robots.

[34]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[35]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Jie Yang,et al.  Texture Segmentation using LBP embedded Region Competition , 2005 .

[38]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[39]  Yupin Luo,et al.  Unsupervised Texture Segmentation via Applying Geodesic Active Regions to Gaborian Feature Space , 2007 .

[40]  Suyash P. Awate,et al.  Unsupervised Texture Segmentation with Nonparametric Neighborhood Statistics , 2006, ECCV.

[41]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[42]  Gilles Aubert,et al.  Wavelet-based level set evolution for classification of textured images , 2003, IEEE Trans. Image Process..

[43]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[44]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[45]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[46]  Matti Pietikäinen,et al.  Classification with color and texture: jointly or separately? , 2004, Pattern Recognit..

[47]  Bedrich J. Hosticka,et al.  A comparison of texture feature extraction using adaptive gabor filtering, pyramidal and tree structured wavelet transforms , 1996, Pattern Recognit..

[48]  Topi Mäenpää,et al.  The local binary pattern approach to texture analysis - extensions and applications , 2003 .

[49]  Petia Radeva,et al.  Texture Segmentation by Statistical Deformable Models , 2004, Int. J. Image Graph..

[50]  L. Bentabet,et al.  A ROBUST LEVEL SET APPROACH FOR IMAGE SEGMENTATION AND STATISTICAL MODELLING , 2022 .

[51]  Rachid Deriche,et al.  Geodesic active contours for supervised texture segmentation , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[52]  Matti Pietikäinen,et al.  Optimising Colour and Texture Features for Real-time Visual Inspection , 2002, Pattern Analysis & Applications.

[53]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[54]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[55]  Matti Pietikäinen,et al.  A Novel Real Time System for Facial Expression Recognition , 2005, ACII.