Dynamics and Switching Control of a Class of Underactuated Mechanical Systems with Variant Constraints

[1]  Peng Yan,et al.  Asynchronous Switching Control for Continuous-time Switched Linear Systems with Output-feedback , 2018 .

[2]  Yu Zhang,et al.  Modeling Lane Keeping by a Hybrid Open-Closed-Loop Pulse Control Scheme , 2016, IEEE Transactions on Industrial Informatics.

[3]  Haitao Liao Nonlinear Dynamics of Duffing Oscillator with TimeDelayed Term , 2014 .

[4]  Mahmut Reyhanoglu,et al.  Exponential stabilization of an underactuated autonomous surface vessel , 1997, Autom..

[5]  Weiliang Xu,et al.  Stabilization of second-order nonholonomic systems in canonical chained form , 2001, Robotics Auton. Syst..

[6]  Zhiyong Geng,et al.  Dynamics synthesis and control for a hopping robot with articulated leg , 2011 .

[7]  Dan B. Marghitu,et al.  Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points , 1994, Int. J. Robotics Res..

[8]  Martin Buehler,et al.  Controlled passive dynamic running experiments with the ARL-monopod II , 2006, IEEE Transactions on Robotics.

[9]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[10]  Jie Zhao,et al.  Human-Like Walking with Heel Off and Toe Support for Biped Robot , 2017 .

[11]  Reza Olfati-Saber,et al.  Normal forms for underactuated mechanical systems with symmetry , 2002, IEEE Trans. Autom. Control..

[12]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[13]  Takashi Emura,et al.  Energy-preserving control of a passive one-legged running robot , 2004, Adv. Robotics.

[14]  Yu-Ping Tian,et al.  Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control , 2002, Autom..

[15]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[16]  R. M’Closkey,et al.  Time-varying homogeneous feedback: Design tools for the exponential stabilization of systems with drift , 1998 .

[17]  Wei Sun,et al.  Stabilizing the second-order nonholonomic systems with chained form by finite-time stabilizing controllers , 2015, Robotica (Cambridge. Print).

[18]  Bernard Brogliato,et al.  Modeling, stability and control of biped robots - a general framework , 2004, Autom..

[19]  Yu Zhang,et al.  Steering measurement decomposition for vehicle lane keeping – A study of driver behaviour , 2018 .

[20]  Aaron D. Ames,et al.  Dynamic Humanoid Locomotion: A Scalable Formulation for HZD Gait Optimization , 2018, IEEE Transactions on Robotics.

[21]  Christine Chevallereau,et al.  Nonlinear control of mechanical systems with an unactuated cyclic variable , 2005, IEEE Transactions on Automatic Control.