Plasma Anisotropies and Currents in the Near‐Earth Plasma Sheet and Inner Magnetosphere

The region occupying radial distances of ∼3–9 Earth radii (RE) in the nightside includes the near‐Earth plasma sheet with stretched magnetic field lines and the inner magnetosphere with strong dipolar magnetic field. In this region, the plasma flow energy, which was injected into the inner magnetosphere from the magnetotail, is converted to particle heating and electromagnetic wave generation. These important processes are controlled by plasma anisotropies, which are the focus of this study. Using measurements of Time History of Events and Macroscale Interactions during Substorms and Van Allen Probes in this transition region we obtain radial profiles of ion and electron temperatures and anisotropies for various geomagnetic activity levels. Ion and electron anisotropies vary with the geomagnetic activity in opposite directions. Parallel anisotropic ions are observed together with transversely anisotropic electrons, whereas the change of ion anisotropy from parallel to transverse (with increasing Kp) is accompanied by the electron anisotropy changing from transverse to parallel. Based on plasma anisotropy observations, we estimate that the anisotropy‐related currents (curvature currents) are about 10–20% of the diamagnetic currents.

[1]  M. Kuznetsova,et al.  On the origin of plasma sheet reconfiguration during the substorm growth phase , 2017 .

[2]  L. Lanzerotti,et al.  The Characteristic Pitch Angle Distributions of 1 eV to 600 keV Protons Near the Equator Based On Van Allen Probes Observations , 2017 .

[3]  X. Liu,et al.  Quasilinear analysis of saturation properties of broadband whistler mode waves , 2017 .

[4]  J. Birn,et al.  Ion velocity distributions in dipolarization events: Distributions in the central plasma sheet , 2017 .

[5]  V. Angelopoulos,et al.  Characteristics of ion distribution functions in dipolarizing flux bundles: Event studies , 2017 .

[6]  V. Angelopoulos,et al.  Extensive electron transport and energization via multiple, localized dipolarizing flux bundles , 2017 .

[7]  Frank R. Toffoletto,et al.  Plasma sheet injections into the inner magnetosphere: Two‐way coupled OpenGGCM‐RCM model results , 2017 .

[8]  A. Runov,et al.  The interaction of finite‐width reconnection exhaust jets with a dipolar magnetic field configuration , 2017 .

[9]  N. Olsen,et al.  Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents , 2017 .

[10]  V. Decyk,et al.  On the parameter dependence of the whistler anisotropy instability , 2017 .

[11]  N. Tsyganenko,et al.  An empirical RBF model of the magnetosphere parameterized by interplanetary and ground‐based drivers , 2016 .

[12]  J. Bortnik,et al.  The relationship between the macroscopic state of electrons and the properties of chorus waves observed by the Van Allen Probes , 2016 .

[13]  L. Lanzerotti,et al.  Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere , 2016 .

[14]  N. Ganushkina,et al.  Challenges associated with near‐Earth nightside current , 2016 .

[15]  Vassilis Angelopoulos,et al.  Storm time current distribution in the inner equatorial magnetosphere: THEMIS observations , 2016 .

[16]  G. Le,et al.  Empirical modeling of the storm time innermost magnetosphere using Van Allen Probes and THEMIS data: Eastward and banana currents , 2016 .

[17]  V. Angelopoulos,et al.  Empirical modeling of 3‐D force‐balanced plasma and magnetic field structures during substorm growth phase , 2015 .

[18]  M. Ashour‐Abdalla,et al.  Circulation of Heavy Ions and Their Dynamical Effects in the Magnetosphere: Recent Observations and Models , 2014 .

[19]  N. Ganushkina,et al.  Contribution from different current systems to SYM and ASY midlatitude indices , 2014 .

[20]  Wolfgang Baumjohann,et al.  Electron pitch angle/energy distribution in the magnetotail , 2014 .

[21]  B. Mauk,et al.  The role of small‐scale ion injections in the buildup of Earth's ring current pressure: Van Allen Probes observations of the 17 March 2013 storm , 2014 .

[22]  Tsugunobu Nagai,et al.  The Comprehensive Inner Magnetosphere‐Ionosphere Model , 2014 .

[23]  E. Antonova,et al.  Plasma pressure distribution in the surrounding the Earth plasma ring and its role in the magnetospheric dynamics , 2014 .

[24]  G. Reeves,et al.  Simulations of inner magnetosphere dynamics with an expanded RAM‐SCB model and comparisons with Van Allen Probes observations , 2014 .

[25]  Daniel N. Baker,et al.  Direct calculation of the ring current distribution and magnetic structure seen by Cluster during geomagnetic storms , 2014 .

[26]  J. B. Blake,et al.  Science Goals and Overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA’s Van Allen Probes Mission , 2013, Space Science Reviews.

[27]  I. J. Rae,et al.  Sources of electron pitch angle anisotropy in the magnetotail plasma sheet , 2013 .

[28]  V. Angelopoulos,et al.  ARTEMIS observations of lunar pickup ions: Mass constraints on ion species , 2013 .

[29]  E. Grimes,et al.  Comparison of TWINS and THEMIS observations of proton pitch angle distributions in the ring current during the 29 May 2010 geomagnetic storm , 2013 .

[30]  William Daughton,et al.  A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection , 2013 .

[31]  D. Crawford,et al.  The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP , 2013 .

[32]  N. Y. Ganushkina,et al.  Defining and resolving current systems in geospace , 2013, 1701.04714.

[33]  T. Iyemori Formation of the Storm‐Time Ring Current and the Dst Field: Some Recent Topics , 2013 .

[34]  N. Ganushkina Drivers of the inner magnetosphere , 2013 .

[35]  Kazue Takahashi,et al.  Dynamics of Ions of Ionospheric Origin During Magnetic Storms: Their Acceleration Mechanism and Transport Path to Ring Current , 2013 .

[36]  M. F. Thomsen,et al.  Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission , 2013, Space Science Reviews.

[37]  V. Angelopoulos,et al.  Spatial distributions of ion pitch angle anisotropy in the near‐Earth magnetosphere and tail plasma sheet , 2013 .

[38]  V. Angelopoulos,et al.  The effects of transient, localized electric fields on equatorial electron acceleration and transport toward the inner magnetosphere , 2012 .

[39]  David G. Sibeck,et al.  Science Objectives and Rationale for the Radiation Belt Storm Probes Mission , 2012, Space Science Reviews.

[40]  V. Jordanova,et al.  Modeling ring current ion and electron dynamics and plasma instabilities during a high‐speed stream driven storm , 2012 .

[41]  V. Angelopoulos,et al.  Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric convection , 2012 .

[42]  D. Baker,et al.  Particle Acceleration in the Magnetotail and Aurora , 2012 .

[43]  T. Pulkkinen,et al.  Storm-time ring current: model-dependent results , 2012 .

[44]  N. Ganushkina,et al.  Deciphering magnetospheric cross‐field currents , 2011 .

[45]  B. Ni,et al.  Evolution of electron pitch angle distributions following injection from the plasma sheet , 2011 .

[46]  C. Owen,et al.  Average magnetotail electron and proton pitch angle distributions from Cluster PEACE and CIS observations , 2011 .

[47]  G. Tóth,et al.  Self-consistent inner magnetosphere simulation driven by a global MHD model , 2010 .

[48]  Richard M. Thorne,et al.  Radiation belt dynamics: The importance of wave‐particle interactions , 2010 .

[49]  B. Anderson,et al.  Empirical modeling of a CIR‐driven magnetic storm , 2010 .

[50]  Yuri Shprits,et al.  Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss , 2008 .

[51]  R. Abiad,et al.  The THEMIS ESA Plasma Instrument and In-flight Calibration , 2008 .

[52]  I. J. Rae,et al.  Tail Reconnection Triggering Substorm Onset , 2008, Science.

[53]  T. Moore,et al.  Ionospheric ions in the near‐Earth magnetotail , 2008 .

[54]  U. Auster,et al.  First Results from the THEMIS Mission , 2008 .

[55]  Werner Magnes,et al.  The THEMIS Fluxgate Magnetometer , 2008 .

[56]  F. Toffoletto,et al.  How the Earth's inner magnetosphere works: An evolving picture , 2007 .

[57]  Edmond C. Roelof,et al.  First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data , 2005 .

[58]  V. Jordanova,et al.  Relativistic model of ring current and radiation belt ions and electrons: Initial results , 2005 .

[59]  N. Tsyganenko,et al.  Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms , 2005 .

[60]  A. Jorgensen,et al.  A statistical study of the global structure of the ring current , 2004 .

[61]  C. Russell,et al.  Morphology of the ring current derived from magnetic field observations , 2004 .

[62]  Justin C. Kasper,et al.  Storm‐time distortion of the inner magnetosphere: How severe can it get? , 2003 .

[63]  Xueqin Huang,et al.  Distribution of density along magnetospheric field lines , 2003 .

[64]  S. Fu,et al.  Ion composition variations in the inner magnetosphere: Individual and collective storm effects in 1991 , 2001 .

[65]  H. Singer,et al.  Storm-substorm relationship: Contribution of the tail current to , 2001 .

[66]  Wolfgang Baumjohann,et al.  Bi‐directional electron distributions associated with near‐tail flux transport , 2001 .

[67]  I. Daglis,et al.  An average image of proton plasma pressure and of current systems in the equatorial plane derived from AMPTE/CCE‐CHEM measurements , 1999 .

[68]  Wolfgang Baumjohann,et al.  The terrestrial ring current: Origin, formation, and decay , 1999 .

[69]  T. Moore,et al.  Ring current modeling in a realistic magnetic field configuration , 1997 .

[70]  V. Trakhtengerts,et al.  Evolution of the low-latitude geomagnetic storm field and the importance of turbulent diffusion for ring current particle losses , 1996 .

[71]  Y. Feldstein,et al.  Magnetic storms and magnetotail currents , 1996 .

[72]  V. A. Sergeev,et al.  Steady magnetospheric convection: A review of recent results , 1996 .

[73]  S. Peter Gary,et al.  Theory of Space Plasma Microinstabilities , 1993 .

[74]  R. Sheldon,et al.  Ion transport and loss in the Earth's quiet ring current: 1. Data and standard model , 1993 .

[75]  M. Schulz,et al.  Access of energetic particles to storm time ring current through enhanced radial “diffusion” , 1989 .

[76]  Wolfgang Baumjohann,et al.  The magnetopause for large magnetic shear: AMPTE/IRM observations , 1986 .

[77]  E. W. Hones,et al.  Bi‐directional electron pitch angle anisotropy in the plasma sheet , 1981 .

[78]  G. S. Stiles,et al.  Plasma sheet pressure anisotropies , 1978 .

[79]  L. Lyons Adiabatic evolution of trapped particle pitch angle distributions during a storm main phase , 1977 .

[80]  D. Williams,et al.  The proton ring current and its interaction with the plasmapause: Storm recovery phase , 1974 .

[81]  V. Angelopoulos,et al.  Plasma sheet pressure evolution related to substorms , 2010 .

[82]  T. Pulkkinen,et al.  The inner magnetosphere : physics and modeling , 2005 .

[83]  Margaret W. Chen,et al.  Simulations of ring current proton pitch angle distributions , 1998 .

[84]  I. Richardson,et al.  Corotating MeV/amu ion enhancements at ≤1 AU from 1978 to 1986 , 1993 .

[85]  A. Lui Radial transport of storm time ring current ions , 1993 .

[86]  R. Puetter,et al.  A two-dimensional, time-dependent, near-earth magnetotail , 1991 .

[87]  H. Garcia,et al.  Anisotropy characteristics of geomagnetically trapped ions , 1985 .

[88]  Harlan E. Spence,et al.  University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository , 2022 .