GABAergic depolarization during early cortical development and implications for anticonvulsive therapy in neonates

Epileptic seizures rank among the most frequent neurologic symptoms during the neonatal period. Accumulating data from experimental animal studies and clinical trials in humans suggest that neonatal seizures could adversely affect normal brain development and result in long‐term neurologic sequelae. Unfortunately, currently used anticonvulsive drugs are often ineffective in the neonatal period. One particularity of the immature neuronal network during neonatal development is that the neurotransmitter γ‐aminobutyric acid (GABA) is mainly depolarizing, rather than hyperpolarizing as commonly observed in adults. This might, in part, explain not only the higher seizure propensity of the immature neuronal network, but also the limited anticonvulsive efficacy of GABA‐enhancing drugs during early postnatal life. Accordingly, pharmacologic attenuation of GABAergic depolarization has been proposed as a strategy for neonatal seizure control. However, the underlying conjecture of a depolarizing mode of GABA action has been seriously challenged recently. In the present review, we will summarize the state of knowledge regarding GABAergic depolarization in early life and discuss how these data might impact a currently tested anticonvulsive strategy.

[1]  R. Khazipov,et al.  Antiepileptic effects of endogenous beta-hydroxybutyrate in suckling infant rats , 2011, Epilepsy Research.

[2]  Y. Ben-Ari,et al.  Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital. , 2011, Brain : a journal of neurology.

[3]  Ethan M. Goldberg,et al.  Rapid developmental maturation of neocortical FS cell intrinsic excitability. , 2011, Cerebral cortex.

[4]  A. Kriegstein,et al.  Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. , 2011, Cerebral cortex.

[5]  Michel A. Picardo,et al.  Depolarizing Actions of GABA in Immature Neurons Depend Neither on Ketone Bodies Nor on Pyruvate , 2011, The Journal of Neuroscience.

[6]  P. Bregestovski,et al.  Inhibition of spontaneous network activity in neonatal hippocampal slices by energy substrates is not correlated with intracellular acidification , 2011, Journal of neurochemistry.

[7]  K. Albus,et al.  Age‐ and region‐specific effects of anticonvulsants and bumetanide on 4‐aminopyridine–induced seizure‐like events in immature rat hippocampal–entorhinal cortex slices , 2011, Epilepsia.

[8]  M. Feller,et al.  Non–cell-autonomous factor induces the transition from excitatory to inhibitory GABA signaling in retina independent of activity , 2010, Proceedings of the National Academy of Sciences.

[9]  K. Holthoff,et al.  GABA Depolarizes Immature Neocortical Neurons in the Presence of the Ketone Body β-Hydroxybutyrate , 2010, The Journal of Neuroscience.

[10]  K. Kaila,et al.  Spontaneous Network Events Driven by Depolarizing GABA Action in Neonatal Hippocampal Slices are Not Attributable to Deficient Mitochondrial Energy Metabolism , 2010, The Journal of Neuroscience.

[11]  A. Draguhn,et al.  Tonic GABAergic control of mouse dentate granule cells during postnatal development , 2010, The European journal of neuroscience.

[12]  Heiko J Luhmann,et al.  Intrinsic activation of GABAA receptors suppresses epileptiform activity in the cerebral cortex of immature mice , 2010, Epilepsia.

[13]  G. Greisen,et al.  Approach to seizures in the neonatal period: a European perspective , 2010, Acta paediatrica.

[14]  D. A. Edwards,et al.  Bumetanide Alleviates Epileptogenic and Neurotoxic Effects of Sevoflurane in Neonatal Rat Brain , 2010, Anesthesiology.

[15]  P. Bregestovski,et al.  Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro , 2010, Journal of neurochemistry.

[16]  F. Jensen Neonatal seizures: an update on mechanisms and management. , 2009, Clinics in perinatology.

[17]  C. Allen,et al.  GABAergic signaling induces divergent neuronal Ca2+ responses in the suprachiasmatic nucleus network , 2009, The European journal of neuroscience.

[18]  Kevin J. Staley,et al.  Differences in Cortical versus Subcortical GABAergic Signaling: A Candidate Mechanism of Electroclinical Uncoupling of Neonatal Seizures , 2009, Neuron.

[19]  R. Sankar,et al.  Bumetanide inhibits rapid kindling in neonatal rats , 2009, Epilepsia.

[20]  Steven P. Miller,et al.  Clinical Neonatal Seizures are Independently Associated with Outcome in Infants at Risk for Hypoxic-Ischemic Brain Injury. , 2009, The Journal of pediatrics.

[21]  R. Yuste,et al.  Depolarizing effect of neocortical chandelier neurons , 2022 .

[22]  J. Mulder,et al.  GABA action in immature neocortical neurons directly depends on the availability of ketone bodies , 2009, Journal of neurochemistry.

[23]  Y. Ben-Ari,et al.  Bumetanide, an NKCC1 antagonist, does not prevent formation of epileptogenic focus but blocks epileptic focus seizures in immature rat hippocampus. , 2009, Journal of neurophysiology.

[24]  J. Yamada,et al.  Compensatory Enhancement of Intrinsic Spiking upon NKCC1 Disruption in Neonatal Hippocampus , 2009, The Journal of Neuroscience.

[25]  S. Vanhatalo,et al.  Bumetanide for neonatal seizures: Based on evidence or enthusiasm? , 2009, Epilepsia.

[26]  K. Staley,et al.  Decreased Seizure Activity in a Human Neonate Treated With Bumetanide, an Inhibitor of the Na+-K+-2Cl- Cotransporter NKCC1 , 2009, Journal of child neurology.

[27]  Claudio Rivera,et al.  Cation-Chloride Cotransporters and Neuronal Function , 2009, Neuron.

[28]  V. Stein,et al.  NKCC1-Dependent GABAergic Excitation Drives Synaptic Network Maturation during Early Hippocampal Development , 2009, The Journal of Neuroscience.

[29]  Michelle M. Garrison,et al.  Neonatal Seizures: Treatment and Treatment Variability in 31 United States Pediatric Hospitals , 2009, Journal of child neurology.

[30]  P. Wenner,et al.  NKCC1 and AE3 appear to accumulate chloride in embryonic motoneurons. , 2009, Journal of neurophysiology.

[31]  Gaute T. Einevoll,et al.  Astrocytic Mechanisms Explaining Neural-Activity-Induced Shrinkage of Extraneuronal Space , 2009, PLoS Comput. Biol..

[32]  S. Kirischuk,et al.  GABA transporter 1 tunes GABAergic synaptic transmission at output neurons of the mouse neostriatum , 2008, The Journal of physiology.

[33]  Rosa Cossart,et al.  Sequential Generation of Two Distinct Synapse-Driven Network Patterns in Developing Neocortex , 2008, The Journal of Neuroscience.

[34]  B. Nahed,et al.  Roles of the cation–chloride cotransporters in neurological disease , 2008, Nature Clinical Practice Neurology.

[35]  K. Staley,et al.  The bumetanide-sensitive Na-K-2Cl cotransporter NKCC1 as a potential target of a novel mechanism-based treatment strategy for neonatal seizures. , 2008, Neurosurgical focus.

[36]  Sylvain Rheims,et al.  Excitatory GABA in rodent developing neocortex in vitro. , 2008, Journal of neurophysiology.

[37]  Arnold R Kriegstein,et al.  GABA Regulates Excitatory Synapse Formation in the Neocortex via NMDA Receptor Activation , 2008, The Journal of Neuroscience.

[38]  Sylvain Rheims,et al.  Layer-specific generation and propagation of seizures in slices of developing neocortex: role of excitatory GABAergic synapses. , 2008, Journal of neurophysiology.

[39]  E. Delpire,et al.  NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus , 2008, Epilepsy Research.

[40]  E. Brustein,et al.  Neurogenic Role of the Depolarizing Chloride Gradient Revealed by Global Overexpression of KCC2 from the Onset of Development , 2008, The Journal of Neuroscience.

[41]  K. Staley,et al.  Thermodynamic Regulation of NKCC1-Mediated Cl− Cotransport Underlies Plasticity of GABAA Signaling in Neonatal Neurons , 2008, The Journal of Neuroscience.

[42]  K. Staley,et al.  Bumetanide enhances phenobarbital efficacy in a neonatal seizure model , 2008, Annals of neurology.

[43]  J. Wheless,et al.  Treatment of pediatric epilepsy: European expert opinion, 2007. , 2007, Epileptic disorders : international epilepsy journal with videotape.

[44]  R. Khazipov,et al.  GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. , 2007, Physiological reviews.

[45]  H. Luhmann,et al.  Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse , 2007, Neuropharmacology.

[46]  H. Luhmann,et al.  Kinetic Properties of Cl− Uptake Mediated by Na+-Dependent K+-2Cl− Cotransport in Immature Rat Neocortical Neurons , 2007, The Journal of Neuroscience.

[47]  Michael J. O'Donovan,et al.  Dual personality of GABA/glycine-mediated depolarizations in immature spinal cord , 2007, Proceedings of the National Academy of Sciences.

[48]  N. Vardi,et al.  NKCC1 does not accumulate chloride in developing retinal neurons. , 2007, Journal of neurophysiology.

[49]  Yehezkel Ben-Ari,et al.  Rapid cortical oscillations and early motor activity in premature human neonate. , 2007, Cerebral cortex.

[50]  M. Holtkamp,et al.  Anticonvulsant, antiepileptogenic, and antiictogenic pharmacostrategies , 2007, Cellular and Molecular Life Sciences.

[51]  M. Poo,et al.  Excitatory GABA Action Is Essential for Morphological Maturation of Cortical Neurons In Vivo , 2007, The Journal of Neuroscience.

[52]  J. Rho,et al.  Do Seizures Affect the Developing Brain? Lessons From the Laboratory , 2007, Journal of child neurology.

[53]  R. Khazipov,et al.  Maternal Oxytocin Triggers a Transient Inhibitory Switch in GABA Signaling in the Fetal Brain During Delivery , 2006, Science.

[54]  Yehezkel Ben-Ari,et al.  Effects of seizures on developmental processes in the immature brain , 2006, The Lancet Neurology.

[55]  Heiko J. Luhmann,et al.  Early patterns of electrical activity in the developing cerebral cortex of humans and rodents , 2006, Trends in Neurosciences.

[56]  Juha Voipio,et al.  The cation‐chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus , 2006, The Journal of physiology.

[57]  S. Kirischuk,et al.  Ambient GABA Constrains the Strength of GABAergic Synapses at Cajal-Retzius Cells in the Developing Visual Cortex , 2006, The Journal of Neuroscience.

[58]  K. Aihara,et al.  Bidirectional modulation of neuronal responses by depolarizing GABAergic inputs. , 2006, Biophysical journal.

[59]  Shoji Nakamura,et al.  In vivo optical recordings of synaptic transmission and intracellular Ca2+ and Cl– in the superior colliculus of fetal rats , 2006, The European journal of neuroscience.

[60]  R. Clancy,et al.  Summary proceedings from the neurology group on neonatal seizures. , 2006, Pediatrics.

[61]  Hongjun Song,et al.  GABA regulates synaptic integration of newly generated neurons in the adult brain , 2006, Nature.

[62]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[63]  F. Jensen,et al.  NKCC1 transporter facilitates seizures in the developing brain , 2005, Nature Medicine.

[64]  R. Khazipov,et al.  Anticonvulsant action of GABA in the high potassium-low magnesium model of ictogenesis in the neonatal rat hippocampus in vivo and in vitro. , 2005, Journal of neurophysiology.

[65]  E. Wirrell,et al.  Neonatal seizures: to treat or not to treat? , 2005, Seminars in pediatric neurology.

[66]  K. Aihara,et al.  Possible effects of depolarizing GABAA conductance on the neuronal input-output relationship: a modeling study. , 2005, Journal of neurophysiology.

[67]  G. Gamba Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. , 2005, Physiological reviews.

[68]  E. Syková,et al.  Extrasynaptic volume transmission and diffusion parameters of the extracellular space , 2004, Neuroscience.

[69]  A. Marty,et al.  Osmotic Tension as a Possible Link between GABAA Receptor Activation and Intracellular Calcium Elevation , 2004, Neuron.

[70]  D. Booth,et al.  Anticonvulsants for neonates with seizures. , 2004, The Cochrane database of systematic reviews.

[71]  Hiroki Toyoda,et al.  Cl− uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1 , 2004, The Journal of physiology.

[72]  D. Mount,et al.  Molecular physiology of cation-coupled Cl− cotransport: the SLC12 family , 2004, Pflügers Archiv.

[73]  G. Holmes,et al.  Membrane potential of CA3 hippocampal pyramidal cells during postnatal development. , 2003, Journal of neurophysiology.

[74]  A. Bordey,et al.  GABA Depolarizes Neuronal Progenitors of the Postnatal Subventricular Zone Via GABAA Receptor Activation , 2003, The Journal of physiology.

[75]  A. Konnerth,et al.  "In vivo" monitoring of neuronal network activity in zebrafish by two-photon Ca2+ imaging , 2003, Pflügers Archiv.

[76]  E. Friauf,et al.  Expression and Function of Chloride Transporters during Development of Inhibitory Neurotransmission in the Auditory Brainstem , 2003, The Journal of Neuroscience.

[77]  Juha Voipio,et al.  Cation–chloride co-transporters in neuronal communication, development and trauma , 2003, Trends in Neurosciences.

[78]  K. Staley,et al.  Excitatory Actions of Endogenously Released GABA Contribute to Initiation of Ictal Epileptiform Activity in the Developing Hippocampus , 2003, The Journal of Neuroscience.

[79]  G. Stuart,et al.  Excitatory Actions of GABA in the Cortex , 2003, Neuron.

[80]  H. Luhmann,et al.  Layer-specific expression of Cl− transporters and differential [Cl−]i in newborn rat cortex , 2002, Neuroreport.

[81]  K. Kaila,et al.  Patterns of cation‐chloride cotransporter expression during embryonic rodent CNS development , 2002, The European journal of neuroscience.

[82]  O. Garaschuk,et al.  Two-photon chloride imaging in neurons of brain slices , 2002, Pflügers Archiv.

[83]  Y. Ben-Ari,et al.  Early sequential formation of functional GABAA and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus , 2002, The European journal of neuroscience.

[84]  G. Buzsáki,et al.  Correlated Bursts of Activity in the Neonatal Hippocampus in Vivo , 2002, Science.

[85]  Angus M. Brown,et al.  Intrinsic optical signals in the rat optic nerve: Role for K+ uptake via NKCC1 and swelling of astrocytes , 2002, Glia.

[86]  C. Hübner,et al.  Expression of the Na-K-2Cl-cotransporter NKCC1 during mouse development , 2001, Mechanisms of Development.

[87]  J. E. Wells,et al.  GABAergic Inhibition Suppresses Paroxysmal Network Activity in the Neonatal Rodent Hippocampus and Neocortex , 2000, The Journal of Neuroscience.

[88]  D. Lovinger,et al.  Abnormal GABAA Receptor-Mediated Currents in Dorsal Root Ganglion Neurons Isolated from Na–K–2Cl Cotransporter Null Mice , 2000, The Journal of Neuroscience.

[89]  O. Garaschuk,et al.  Large-scale oscillatory calcium waves in the immature cortex , 2000, Nature Neuroscience.

[90]  Yehezkel Ben-Ari,et al.  The Establishment of GABAergic and Glutamatergic Synapses on CA1 Pyramidal Neurons is Sequential and Correlates with the Development of the Apical Dendrite , 1999, The Journal of Neuroscience.

[91]  A. Kriegstein,et al.  Endogenous activation of metabotropic glutamate receptors in neocortical development causes neuronal calcium oscillations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[92]  N Paneth,et al.  Phenobarbital compared with phenytoin for the treatment of neonatal seizures. , 1999, The New England journal of medicine.

[93]  A. Kriegstein,et al.  Changing properties of GABA(A) receptor-mediated signaling during early neocortical development. , 1999, Journal of neurophysiology.

[94]  R. Miles,et al.  Noninvasive Measurements of the Membrane Potential and GABAergic Action in Hippocampal Interneurons , 1999, The Journal of Neuroscience.

[95]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[96]  J. Mienville Persistent depolarizing action of GABA in rat Cajal‐Retzius cells , 1998, The Journal of physiology.

[97]  P. Schwartzkroin,et al.  Osmolarity, ionic flux, and changes in brain excitability , 1998, Epilepsy Research.

[98]  Xavier Leinekugel,et al.  Ca2+ Oscillations Mediated by the Synergistic Excitatory Actions of GABAA and NMDA Receptors in the Neonatal Hippocampus , 1997, Neuron.

[99]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[100]  A. Kriegstein,et al.  Excitatory GABA Responses in Embryonic and Neonatal Cortical Slices Demonstrated by Gramicidin Perforated-Patch Recordings and Calcium Imaging , 1996, The Journal of Neuroscience.

[101]  S. Javaheri,et al.  Ionic Composition of Cisternal CSF in Acute Respiratory Acidosis: Lack of Effect of Large Dose Bumetanide , 1993, Journal of neurochemistry.

[102]  K. Staley Enhancement of the excitatory actions of GABA by barbiturates and benzodiazepines , 1992, Neuroscience Letters.

[103]  H. Romijn,et al.  At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? , 1991, Early human development.

[104]  Rafael Yuste,et al.  Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters , 1991, Neuron.

[105]  D. Prince,et al.  Postnatal maturation of the GABAergic system in rat neocortex. , 1991, Journal of neurophysiology.

[106]  O. Snead,et al.  Bicuculline induced seizures in infant rats: ontogeny of behavioral and electrocortical phenomena. , 1990, Brain research. Developmental brain research.

[107]  R. Twyman,et al.  Barbiturate regulation of kinetic properties of the GABAA receptor channel of mouse spinal neurones in culture. , 1989, The Journal of physiology.

[108]  Y. Ben-Ari,et al.  Giant synaptic potentials in immature rat CA3 hippocampal neurones. , 1989, The Journal of physiology.

[109]  R. Macdonald,et al.  Differential regulation of γ‐aminobutyric acid receptor channels by diazepam and phenobarbital , 1989 .

[110]  J. Taube,et al.  Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing response to gamma-aminobutyric acid in rabbit hippocampus studied in vitro , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[111]  J. Barker,et al.  Diazepam and (--)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[112]  M. Santini,et al.  Postsynaptic potentials and spike variations in the feline hippocampus during postnatal ontogenesis. , 1968, Experimental neurology.

[113]  K. Albus,et al.  A NEW FORM OF PROGRESSIVE MYOCLONUS EPILEPSY WITH EARLY ATAXIA AND SCOLIOSIS DUE TO MUTATION IN THE GOLGI PROTEIN GOSR2 , 2011 .

[114]  P. Mareš Age- and dose-specific anticonvulsant action of bumetanide in immature rats. , 2009, Physiological research.

[115]  Marat Minlebaev,et al.  Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo. , 2007, Journal of neurophysiology.

[116]  R. Sankar,et al.  Neonatal seizures: after all these years we still love what doesn't work. , 2005, Neurology.

[117]  J. Voipio,et al.  Two developmental switches in GABAergic signalling: the K+–Cl− cotransporter KCC2 and carbonic anhydrase CAVII , 2005, The Journal of physiology.

[118]  V. Stein,et al.  Expression of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride , 2004, The Journal of comparative neurology.

[119]  R. Olsen,et al.  GABAA receptor channels. , 1994, Annual review of neuroscience.

[120]  R. Macdonald,et al.  Differential regulation of gamma-aminobutyric acid receptor channels by diazepam and phenobarbital. , 1989, Annals of neurology.