Wide-temperature range CMOS capacitance to digital convertor for MEMS pressure sensors

Abstract We present a complementary metal-oxide-semiconductor (CMOS) capacitance to digital converter (CDC) for capacitive Microelectromechanical Systems (MEMS) pressure sensors, that is functionally tested over a wide temperature range from −20 °C to 225 °C. The proposed circuit uses a sigma–delta technique to convert the input ratio between sensor and reference capacitors into a digital output. A constant-g m biasing technique is used to alleviate performance degradation at high temperatures. The circuit is implemented using the IBM 0.13 μm CMOS process technology which incorporates a 2.5 V power supply. The simulation results show that the circuit offers 0.03% accuracy between −55 °C and 225 °C. The circuit is tested with a commercial MEMS capacitive pressure sensor. Experimental results show that the circuit offers good temperature stability, resolution of 1.44fF, and accuracy of 2.4% between −20 °C and 225 °C.

[1]  Kensall D. Wise,et al.  Integrated sensors, MEMS, and microsystems: Reflections on a fantastic voyage , 2007 .

[2]  Vamsy P. Chodavarapu,et al.  Design of a CMOS readout circuit for wide-temperature range capacitive MEMS sensors , 2014, Fifteenth International Symposium on Quality Electronic Design.

[3]  L. T. Fitch,et al.  Performance of Digital Integrated Circuit Technologies at Very High Temperatures , 1980 .

[4]  James W. Haslett,et al.  A high temperature precision amplifier , 1995 .

[5]  Xinyu Yu High-temperature Bulk CMOS Integrated Circuits for Data Acquisition , 2006 .

[6]  James H. Smith,et al.  Micromachined pressure sensors: review and recent developments , 1997 .

[7]  F. Patrick McCluskey,et al.  High Temperature Electronics , 1997 .

[8]  Xinyu Yu,et al.  A 300 °C, 110-dB Sigma-Delta Modulator with Programmable Gain in Bulk CMOS , 2006, IEEE Custom Integrated Circuits Conference 2006.

[9]  Tai-Hua Chen,et al.  Memory design for high temperature radiation environments , 2008, 2008 IEEE International Reliability Physics Symposium.

[10]  F.A. Levinzon 175$^circhboxC$Silicon-Based Hybrid Charge Amplifier for 175$^circhboxC$and 100-mV/G Miniature Piezoelectric Accelerometer , 2006, IEEE Sensors Journal.

[11]  Magnus Willander,et al.  Silicon carbide and diamond for high temperature device applications , 2006 .

[12]  Xinyu Yu,et al.  Mixed-signal, 275 /spl deg/C instrumentation amplifier in bulk CMOS , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[13]  Gary W. Hunter,et al.  An Overview of High-Temperature Electronics and Sensor Development at NASA Glenn Research Center , 2003 .

[14]  Jiangang Du,et al.  High-temperature single-crystal 3C-SiC capacitive pressure sensor , 2004, IEEE Sensors Journal.

[15]  I. Finvers,et al.  A 14-bit high-temperature ΣΔ modulator in standard CMOS , 2003, IEEE J. Solid State Circuits.

[16]  Mehran Mehregany,et al.  A silicon carbide capacitive pressure sensor for in-cylinder pressure measurement , 2008 .

[17]  Gerard C. M. Meijer,et al.  A high-temperature electronic system for pressure-transducers , 2000, IEEE Trans. Instrum. Meas..

[18]  F. Trofimenkoff,et al.  High temperature electronics using silicon technology , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[19]  Andrea Baschirotto,et al.  Finite gain compensation techniques for high-Q bandpass SC filters , 1990, IEEE International Symposium on Circuits and Systems.

[20]  P. de Jong,et al.  A 300/spl deg/C dynamic-feedback instrumentation amplifier , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[21]  F. S. Shoucair Potential and problems of high-temperature electronics and CMOS integrated circuits (25–250°C) - an overview , 1991 .

[22]  Phillip E Allen,et al.  CMOS Analog Circuit Design , 1987 .

[23]  Gabor C. Temes,et al.  Multibit bandpass delta-sigma modulators using N-path structures , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[24]  P. Sarro,et al.  Fabrication of a CMOS compatible pressure sensor for harsh environments , 2004 .

[25]  Vamsy P. Chodavarapu,et al.  Differential Wide Temperature Range CMOS Interface Circuit for Capacitive MEMS Pressure Sensors , 2015, Sensors.

[26]  Gabor C. Temes,et al.  High-accuracy circuits for on-chip capacitance ratio testing or sensor readout , 1994 .

[27]  Steve Majerus,et al.  Design and long-term operation of high-temperature, bulk-CMOS integrated circuits for instrumentation and control , 2013, 2013 IEEE Energytech.

[28]  R. Engelbrecht,et al.  DIGEST of TECHNICAL PAPERS , 1959 .

[29]  Bo Wang,et al.  High-accuracy circuits for on-chip capacitive ratio testing and sensor readout , 1998, IEEE Trans. Instrum. Meas..

[30]  Stephen J. Finney,et al.  Digital and Analogue Integrated Circuits in Silicon Carbide for High Temperature Operation , 2012 .

[31]  A.H.M. van Roermund,et al.  A 300°C Dynamic-Feedback Instrumentation Amplifier , 1998 .