Vorticities in a LES Model for 3D Periodic Turbulent Flows

Abstract.This paper is devoted to the study of a LES model to simulate turbulent 3D periodic flow. We focus our attention on the vorticity equation derived from this LES model for small values of the numerical grid size δ. We obtain entropy inequalities for the sequence of corresponding vorticities and corresponding pressures independent of δ, provided the initial velocity u0 is in Lx2 while the initial vorticity ω0  =  ∇  ×  u0 is in Lx1. When δ tends to zero, we show convergence, in a distributional sense, of the corresponding equations for the vorticities to the classical 3D equation for the vorticity.

[1]  J. Lions Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal , 1973 .

[2]  William J. Layton,et al.  A simple and stable scale-similarity model for large Eddy simulation: Energy balance and existence of weak solutions , 2003, Appl. Math. Lett..

[3]  D. Blanchard,et al.  Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[4]  J. Lions,et al.  Problemi ai limiti non omogenei (I) , 1961 .

[5]  Remarks on the Navier-Stokes Equations , 1991 .

[6]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[7]  William Layton,et al.  On a well-posed turbulence model , 2005 .

[8]  Roger Lewandowski,et al.  The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity , 1997 .

[9]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[10]  T. Gallouët,et al.  Non-linear elliptic and parabolic equations involving measure data , 1989 .

[11]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[12]  Claude Bardos,et al.  Chapter 11 - Navier-Stokes Equations and Dynamical Systems , 2002 .

[13]  L. Tartar H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  George Keith Batchelor,et al.  An Introduction to Fluid Dynamics. , 1969 .

[15]  R. Bermejo Analysis of an algorithm for the Galerkin-characteristic method , 1991 .

[16]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[17]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[18]  François Murat,et al.  SOLUCIONES RENORMALIZADAS DE EDP ELIPTICAS NO LINEALES , 2004 .

[19]  Marie Farge,et al.  Theoretical Dimension and the Complexity of Simulated Turbulence , 1997 .