A hybrid CUDA, OpenMP, and MPI parallel TCA-based domain adaptation for classification of very high-resolution remote sensing images

[1]  Ahsan Shahzad,et al.  Remote Sensing Image Classification: A Comprehensive Review and Applications , 2022, Mathematical Problems in Engineering.

[2]  Francisco Argüello,et al.  Multi-GPU Registration of High-Resolution Multispectral Images Using HSI-KAZE in a Cluster System , 2022, IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium.

[3]  Andreas Lintermann,et al.  Practice and Experience in using Parallel and Scalable Machine Learning with Heterogenous Modular Supercomputing Architectures , 2021, 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[4]  Lorenzo Bruzzone,et al.  Recent Advances in Domain Adaptation for the Classification of Remote Sensing Data , 2021, ArXiv.

[5]  Hui Xiong,et al.  A Comprehensive Survey on Transfer Learning , 2019, Proceedings of the IEEE.

[6]  Yang Liu,et al.  Target Classification and Recognition for High-Resolution Remote Sensing Images: Using the Parallel Cross-Model Neural Cognitive Computing Algorithm , 2020, IEEE Geoscience and Remote Sensing Magazine.

[7]  Gong Cheng,et al.  Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities , 2020, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[8]  Guisong Xia,et al.  Land-cover classification with high-resolution remote sensing images using transferable deep models , 2018, Remote Sensing of Environment.

[9]  Francisco Argüello,et al.  TCANet for Domain Adaptation of Hyperspectral Images , 2019, Remote. Sens..

[10]  Antonio Plaza,et al.  Cloud Deep Networks for Hyperspectral Image Analysis , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Qiang Zhang,et al.  Domain Adaptation for Convolutional Neural Networks-Based Remote Sensing Scene Classification , 2019, IEEE Geoscience and Remote Sensing Letters.

[12]  Antonio J. Plaza,et al.  Deep Pyramidal Residual Networks for Spectral–Spatial Hyperspectral Image Classification , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Aman Jantan,et al.  State-of-the-art in artificial neural network applications: A survey , 2018, Heliyon.

[14]  J. Benediktsson,et al.  New Frontiers in Spectral-Spatial Hyperspectral Image Classification: The Latest Advances Based on Mathematical Morphology, Markov Random Fields, Segmentation, Sparse Representation, and Deep Learning , 2018, IEEE Geoscience and Remote Sensing Magazine.

[15]  Chao Yang,et al.  A Survey on Deep Transfer Learning , 2018, ICANN.

[16]  Timothy A. Warner,et al.  Implementation of machine-learning classification in remote sensing: an applied review , 2018 .

[17]  Andreas Hueni,et al.  Detection and Correction of Spectral Shift Effects for the Airborne Prism Experiment , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Jun Li,et al.  Advanced Spectral Classifiers for Hyperspectral Images: A review , 2017, IEEE Geoscience and Remote Sensing Magazine.

[19]  Xiaoqiang Lu,et al.  Remote Sensing Image Scene Classification: Benchmark and State of the Art , 2017, Proceedings of the IEEE.

[20]  Kandarpa Kumar Sarma,et al.  Hyperspectral Remote Sensing Classifications: A Perspective Survey , 2016, Trans. GIS.

[21]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Lorenzo Bruzzone,et al.  Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances , 2016, IEEE Geoscience and Remote Sensing Magazine.

[23]  Karl R. Weiss,et al.  A survey of transfer learning , 2016, Journal of Big Data.

[24]  Kate Saenko,et al.  Return of Frustratingly Easy Domain Adaptation , 2015, AAAI.

[25]  Albert Y. Zomaya,et al.  Remote sensing big data computing: Challenges and opportunities , 2015, Future Gener. Comput. Syst..

[26]  Fan Zhang,et al.  Deep Convolutional Neural Networks for Hyperspectral Image Classification , 2015, J. Sensors.

[27]  Shanjun Mao,et al.  Spectral–spatial classification of hyperspectral images using deep convolutional neural networks , 2015 .

[28]  Jiwen Lu,et al.  PCANet: A Simple Deep Learning Baseline for Image Classification? , 2014, IEEE Transactions on Image Processing.

[29]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[30]  Jon Atli Benediktsson,et al.  Very High-Resolution Remote Sensing: Challenges and Opportunities [Point of View] , 2012, Proc. IEEE.

[31]  Qian Du,et al.  Foreword to the Special Issue on High Performance Computing in Earth Observation and Remote Sensing , 2011, IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens..

[32]  Antonio J. Plaza,et al.  Recent Developments in High Performance Computing for Remote Sensing: A Review , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[33]  Yoshua Bengio,et al.  Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach , 2011, ICML.

[34]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[35]  Ivor W. Tsang,et al.  Domain Adaptation via Transfer Component Analysis , 2009, IEEE Transactions on Neural Networks.

[36]  Genong Yu,et al.  Artificial Neural Networks and Remote Sensing , 2009 .

[37]  Neil D. Lawrence,et al.  Dataset Shift in Machine Learning , 2009 .

[38]  Jon Atli Benediktsson,et al.  Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas , 2009, EURASIP J. Adv. Signal Process..

[39]  Qiang Yang,et al.  Transfer Learning via Dimensionality Reduction , 2008, AAAI.

[40]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[41]  Hans-Peter Kriegel,et al.  Integrating structured biological data by Kernel Maximum Mean Discrepancy , 2006, ISMB.

[42]  Ingo Steinwart,et al.  On the Influence of the Kernel on the Consistency of Support Vector Machines , 2002, J. Mach. Learn. Res..

[43]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[44]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[45]  Robert Hecht-Nielsen,et al.  Theory of the backpropagation neural network , 1989, International 1989 Joint Conference on Neural Networks.

[46]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .