A posteriori error estimates and an adaptive scheme of least‐squares meshfree method

A posteriori error estimates and an adaptive refinement scheme of first-order least-squares meshfree method (LSMFM) are presented. The error indicators are readily computed from the residual. For an elliptic problem, the error indicators are further improved by applying the Aubin–Nitsche method. It is demonstrated, through numerical examples, that the error indicators coherently reflect the actual error. In the proposed refinement scheme, Voronoi cells are used for inserting new nodes at appropriate positions. Numerical examples show that the adaptive first-order LSMFM, which combines the proposed error indicators and nodal refinement scheme, is effectively applied to the localized problems such as the shock formation in fluid dynamics. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  B. Jiang The Least-Squares Finite Element Method , 1998 .

[2]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[3]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[4]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[5]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[6]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[7]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[8]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[9]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[10]  Serge Prudhomme,et al.  A technique for a posteriori error estimation of h-p approximations of the Stokes equations , 1998 .

[11]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[12]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[13]  I. G. Currie Fundamental mechanics of fluids , 1974 .

[14]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[15]  B. Jiang The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics , 1998 .

[16]  S. Youn,et al.  A study on the convergence of least‐squares meshfree method under inaccurate integration , 2003 .

[17]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[18]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[19]  Sang-Hoon Park,et al.  The least‐squares meshfree method , 2001 .

[20]  Wagdi G. Habashi,et al.  An adaptive least-squares method for the compressible Euler equations , 1999 .

[21]  Leszek Demkowicz,et al.  Adaptive finite elements for flow problems with moving boundaries. part I: Variational principles and a posteriori estimates , 1984 .

[22]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .