Rate-distortion optimized compression and view-dependent transmission of 3-D normal meshes

A unified approach to rate-distortion (R-D) optimized compression and view-dependent transmission of three-dimensional (3-D) normal meshes is investigated in this work. A normal mesh is partitioned into several segments, which are then encoded independently. The bitstream of each segment is truncated optimally using a geometry distortion model based on the subdivision hierarchy. It is shown that the proposed compression algorithm yields a higher coding gain than the conventional algorithm. Moreover, to facilitate interactive transmission of 3-D data according to a client's viewing position, the server can allocate an adaptive bitrate to each segment based on its visibility priority. Simulation results demonstrate that the view-dependent transmission technique can reduce the bandwidth requirement considerably, while maintaining a good visual quality.

[1]  Narciso García,et al.  Hierarchical coding of 3D models with subdivision surfaces , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[2]  Gauthier Lafruit,et al.  View-dependent, scalable texture streaming in 3-D QoS with MPEG-4 visual texture coding , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[3]  David Levin,et al.  Progressive Compression of Arbitrary Triangular Meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[4]  William Ribarsky,et al.  Real-time, continuous level of detail rendering of height fields , 1996, SIGGRAPH.

[5]  Sang Uk Lee,et al.  Normal mesh compression based on rate-distortion optimization , 2002, 2002 IEEE Workshop on Multimedia Signal Processing..

[6]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[7]  William Lynch,et al.  Compression of functions defined on surfaces of 3D objects , 1997, Proceedings DCC '97. Data Compression Conference.

[8]  C.-C. Jay Kuo,et al.  Progressive coding of 3-D graphic models , 1998, Proc. IEEE.

[9]  Amitabh Varshney,et al.  Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[10]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[11]  C.-C. Jay Kuo,et al.  Error-resilient coding of 3-D graphic models via adaptive mesh segmentation , 2001, IEEE Trans. Circuits Syst. Video Technol..

[12]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[13]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[14]  Christopher Zach,et al.  Adaptive quantization with error bounds for compressed view-dependent multiresolution meshes , 2003, Eurographics.

[15]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[16]  W. Stuetzle,et al.  HIERARCHICAL COMPUTATION OF PL HARMONIC EMBEDDINGS , 1997 .

[17]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[18]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[19]  A. Khodakovsky Normal Mesh Compression , 2000 .

[20]  Ayellet Tal,et al.  Polyhedral surface decomposition with applications , 2002, Comput. Graph..

[21]  C.-C. Jay Kuo,et al.  A progressive view-dependent technique for interactive 3-D mesh transmission , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[22]  David P. Luebke,et al.  View-dependent simplification of arbitrary polygonal environments , 1997, SIGGRAPH.

[23]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[24]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[25]  Edwin H. Blake,et al.  A stateless client for progressive view-dependent transmission , 2001, Web3D '01.

[26]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[27]  David Salesin,et al.  View-dependent refinement of multiresolution meshes with subdivision connectivity , 2003, AFRIGRAPH '03.

[28]  Aria Nosratinia,et al.  Wavelet-Based Image Coding: An Overview , 1999 .

[29]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[30]  Pierre Alliez,et al.  Efficient View-Dependent Refinement of 3 D Meshes using √ 3-Subdivision , 2001 .

[31]  Wim Sweldens,et al.  Building your own wavelets at home , 2000 .

[32]  Christian Bouville,et al.  Real-time reconstruction of wavelet-encoded meshes for view-dependent transmission and visualization , 2002, IEEE Transactions on Circuits and Systems for Video Technology.

[33]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[34]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[35]  Rynson W. H. Lau,et al.  A method for progressive and selective transmission of multi-resolution models , 1999, VRST '99.