Viewing sets of mutually unbiased bases as arcs in finite projective planes

Abstract This note is a short conceptual elaboration of the conjecture of Saniga et al. [J. Opt. B: Quantum Semiclass 6 (2004) L19–L20] by regarding a set of mutually unbiased bases (MUBs) in a d -dimensional Hilbert space as an analogue of an arc in a (finite) projective plane of order d . Complete sets of MUBs thus correspond to ( d  + 1)-arcs, i.e., ovals. In the Desarguesian case, the existence of two principally distinct kinds of ovals for d  = 2 n and n  ⩾ 3, viz. conics and non-conics, implies the existence of two qualitatively different groups of the complete sets of MUBs for the Hilbert spaces of corresponding dimensions. A principally new class of complete sets of MUBs are those having their analogues in ovals in non-Desarguesian projective planes; the lowest dimension when this happens is d  = 9.

[1]  P. Dembowski Finite geometries , 1997 .

[2]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[3]  F. Kárteszi Introduction to Finite Geometries , 1976 .

[4]  Ingemar Bengtsson,et al.  MUBs, Polytopes, and Finite Geometries , 2004, quant-ph/0406174.

[5]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[6]  H. Rosu,et al.  A Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements , 2004, quant-ph/0409081.

[7]  M. Saniga a Geometrical Chart of Altered Temporality (and Spatiality) , 2005 .

[8]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[9]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[10]  Ute Rosenbaum,et al.  Projective Geometry: From Foundations to Applications , 1998 .

[11]  M. S. El Naschie,et al.  The Concepts of E Infinity: An elementary introduction to the Cantorian-fractal theory of quantum physics , 2004 .

[12]  M. Planat,et al.  Abstract algebra, projective geometry and time encoding of quantum information. , 2005, quant-ph/0503159.

[13]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[14]  Metod Saniga,et al.  The Nature of Time: Geometry, Physics and Perception (NATO ARW) , 2003 .

[15]  Tim Penttila,et al.  Configurations of ovals , 2003 .

[16]  M. Saniga Geometry of time and Dimensionality of Space , 2003, physics/0301003.

[17]  Rudolf Lide,et al.  Finite fields , 1983 .

[18]  M. S. El Naschie,et al.  On a Fuzzy Kähler-like Manifold which is Consistent with the Two Slit Experiment , 2005 .

[19]  P. Shor,et al.  Unextendible Product Bases, Uncompletable Product Bases and Bound Entanglement , 1999, quant-ph/9908070.

[20]  W. Wootters Quantum Measurements and Finite Geometry , 2004, quant-ph/0406032.

[21]  Metod Saniga,et al.  Mutually unbiased bases and finite projective planes , 2004 .

[22]  Andreas Klappenecker,et al.  Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.

[23]  M. K. Bennett Affine and Projective Geometry , 1995 .

[24]  Beniamino Segre,et al.  Lectures on modern geometry , 1962 .