Development and Use of Fluorescent Protein Markers in Living Cells

The ability to visualize, track, and quantify molecules and events in living cells with high spatial and temporal resolution is essential for understanding biological systems. Only recently has it become feasible to carry out these tasks due to the advent of fluorescent protein technology. Here, we trace the development of highly visible and minimally perturbing fluorescent proteins that, together with updated fluorescent imaging techniques, are providing unprecedented insights into the movement of proteins and their interactions with cellular components in living cells.

[1]  W. Webb,et al.  Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. , 1976, Biophysical journal.

[2]  M. J. Cormier,et al.  Primary structure of the Aequorea victoria green-fluorescent protein. , 1992, Gene.

[3]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[5]  Roger Y. Tsien,et al.  Improved green fluorescence , 1995, Nature.

[6]  D. O'Kane,et al.  Green‐fluorescent protein mutants with altered fluorescence excitation spectra , 1995, FEBS letters.

[7]  Douglas C. Youvan,et al.  Red-Shifted Excitation Mutants of the Green Fluorescent Protein , 1995, Bio/Technology.

[8]  R. Tsien,et al.  Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer , 1996, Current Biology.

[9]  Tobias Meyer,et al.  Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement , 1996, Nature Biotechnology.

[10]  G. Phillips,et al.  The molecular structure of green fluorescent protein , 1996, Nature Biotechnology.

[11]  Roger Y. Tsien,et al.  Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo , 1996, Current Biology.

[12]  Roger Y. Tsien,et al.  Crystal Structure of the Aequorea victoria Green Fluorescent Protein , 1996, Science.

[13]  J. Lippincott-Schwartz,et al.  Diffusional Mobility of Golgi Proteins in Membranes of Living Cells , 1996, Science.

[14]  A. Verkman,et al.  Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. , 1997, Biophysical journal.

[15]  J. Lippincott-Schwartz,et al.  Two-color green fluorescent protein time-lapse imaging. , 1998, BioTechniques.

[16]  J. Lippincott-Schwartz,et al.  Kinetic Analysis of Secretory Protein Traffic and Characterization of Golgi to Plasma Membrane Transport Intermediates in Living Cells , 1998, The Journal of cell biology.

[17]  Bence Ölveczky,et al.  Rapid Diffusion of Green Fluorescent Protein in the Mitochondrial Matrix , 1998, The Journal of cell biology.

[18]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[19]  S. Kain,et al.  Generation of Destabilized Green Fluorescent Protein as a Transcription Reporter* , 1998, The Journal of Biological Chemistry.

[20]  Erik F. Y. Hom,et al.  Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. , 1999, Biophysical journal.

[21]  W Tvaruskó,et al.  Time-resolved analysis and visualization of dynamic processes in living cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. Jovin,et al.  Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  W. Webb,et al.  Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. , 1999, Biophysical journal.

[24]  T. Cremer,et al.  Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. , 1999, Biophysical journal.

[25]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.

[26]  Jan Ellenberg,et al.  Dynamics and retention of misfolded proteins in native ER membranes , 2000, Nature Cell Biology.

[27]  Y. Engelborghs,et al.  Fluorescence correlation spectroscopy: molecular recognition at the single molecule level , 2000, Journal of molecular recognition : JMR.

[28]  D. Seigneurin [Cytometry]. , 2020, Annales de Pathologie.

[29]  Irving L. Weissman,et al.  "Fluorescent timer": protein that changes color with time. , 2000, Science.

[30]  T. Misteli,et al.  High mobility of proteins in the mammalian cell nucleus , 2000, Nature.

[31]  J. McNally,et al.  The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. , 2000, Science.

[32]  B. Glick,et al.  Raising the speed limits for 4D fluorescence microscopy. , 2000, Traffic.

[33]  J. Lippincott-Schwartz,et al.  Secretory protein trafficking and organelle dynamics in living cells. , 2000, Annual review of cell and developmental biology.

[34]  M. Saraste,et al.  FEBS Lett , 2000 .

[35]  S. Lukyanov,et al.  Natural Animal Coloration Can Be Determined by a Nonfluorescent Green Fluorescent Protein Homolog* , 2000, The Journal of Biological Chemistry.

[36]  J. Lippincott-Schwartz,et al.  Studying protein dynamics in living cells , 2001, Nature Reviews Molecular Cell Biology.

[37]  J. Ellenberg,et al.  Four-dimensional imaging and quantitative reconstruction to analyse complex spatiotemporal processes in live cells , 2001, Nature Cell Biology.

[38]  J. Neefjes,et al.  From fixed to FRAP: measuring protein mobility and activity in living cells , 2001, Nature Cell Biology.

[39]  Tom Misteli,et al.  Kinetic modelling approaches to in vivo imaging , 2001, Nature Reviews Molecular Cell Biology.

[40]  G J Streekstra,et al.  Velocity estimation of spots in three-dimensional confocal image sequences of living cells. , 2001, Cytometry.

[41]  S. Lukyanov,et al.  GFP‐like chromoproteins as a source of far‐red fluorescent proteins , 2001, FEBS letters.

[42]  Ian Parker,et al.  Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling , 2001, Nature Biotechnology.

[43]  W. Almers,et al.  A real-time view of life within 100 nm of the plasma membrane , 2001, Nature Reviews Molecular Cell Biology.

[44]  E. Eisenberg,et al.  Clathrin exchange during clathrin-mediated endocytosis , 2001, The Journal of cell biology.

[45]  S. Hell,et al.  Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. , 2002, Physical review letters.

[46]  B. Glick,et al.  Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) , 2002, Nature Biotechnology.

[47]  R. Tsien,et al.  Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells , 2002, Science.

[48]  George H. Patterson,et al.  A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.

[49]  Andrea C. Pfeifer,et al.  Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport , 2002, Nature.

[50]  A. Miyawaki,et al.  An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[52]  James C. Schaff,et al.  The Virtual Cell , 2002 .

[53]  J. Lippincott-Schwartz,et al.  Active translocon complexes labeled with GFP–Dad1 diffuse slowly as large polysome arrays in the endoplasmic reticulum , 2002, The Journal of cell biology.

[54]  K. Lukyanov,et al.  Diversity and evolution of the green fluorescent protein family , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. Tsien,et al.  A monomeric red fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Andrea H. Brand,et al.  Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins , 2002, Nature Cell Biology.

[57]  S. Lukyanov,et al.  Kindling fluorescent proteins for precise in vivo photolabeling , 2003, Nature Biotechnology.

[58]  Marcel Laflamme Traffic , 2004, Voluminous States.

[59]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[60]  C. Glover,et al.  Gene expression profiling for hematopoietic cell culture , 2006 .