Sustainable construction: some economic challenges

Sustainable construction faces economic challenges at different levels. On the macroeconomic level, the goals of sustainable construction are being implemented most actively in industrial countries in which the share of construction output is decreasing. However in both less developed and newly industrialized countries, the share of construction output is increasing, but the goals of sustainable construction are more difficult to implement. On the mesoeconomic level, the construction sector depends on the implementation of the goals of sustainable development across the national economy as a whole. Supply chains feeding the construction sector are long and intertwined, making it difficult to assess the effect of different materials, components and procedures. On the microeconomic level, buildings are created with shorter time horizons in response to being a demand-derived commodity and increasingly dominated by mechanical, electrical and electronic equipment. Their finance is being adjusted to the short and medium term which is in conflict with sustainable construction, whose goals rely upon the long term. Two broad approaches for meeting the economic challenges of sustainable construction are considered: governance through standards, legal and regulatory practices; market-oriented policies which influence the costs of particular forms of construction. Both approaches have a role, but it is argued that the market-oriented measures will be more effective at the strategic level. La construction durable est confrontée à des enjeux économiques à différents niveaux. Au niveau macroéconomique, les objectifs de construction durable sont appliqués plus activement dans les pays industriels où l'importance du bâtiment dans l'économie diminue. En revanche, dans les pays moins développés ou récemment industrialisés, l'importance du bâtiment augmente, mais les objectifs de construction durable sont plus difficiles à appliquer. Au niveau mésoéconomique, le secteur de la construction dépent de la mise en oeuvre des objectifs de développement de la construction durable sur l'ensemble de l'économie nationale. Etant donné la longueur et la complexité des chaînes d'approvisionnement du secteur de la construction, il s'avère difficile d'évaluer l'effet des différents matériaux, composants et procédures. Au niveau microéconomique, la création des bâtiments vise plutôt un horizon à court terme, dans la mesure où il s'agit de produits répondant à une demande et dominés de plus en plus par les équipements méchaniques, électriques et électroniques. Leur financement est ajusté à court et moyen terme, à l'inverse de la construction durable dont les objectifs sont basés sur le long terme. Le présent document examine deux approches globales qui tiennent compte des enjeux économiques de la construction durable : d'une part, la gestion par le biais de normes et de pratiques légales et réglementaires, d'autre part, la politique orientée vers le marchéqui influe sur les coûts de formes de construction particulières. Les deux approches ont un rôle à jouer, mais les auteurs affirment que le poids des facteurs économiques de la construction rendra les mesures orientées vers le marché plus efficaces au niveau statégique.

[1]  George Ofori,et al.  ISO 14000: Its relevance to the construction industry of Singapore and its potential as the next industry milestone , 1999 .

[2]  Arjen Buijs,et al.  Demonstration projects and sustainable housing: The significance of demonstration projects as a so called second generation steering instrument is examined by the use of case studies , 1996 .

[3]  Raymond J. Cole Postscript: Green Building Challenge 2000 , 1999 .

[4]  Arpad Horvath,et al.  Resource Use and Environmental Emissions of U.S. Construction Sectors , 2000 .

[5]  Kofi Obeng,et al.  Palm kernel shell as fuel for burning bricks , 1997 .

[6]  L. J. Grobler,et al.  The green buildings for Africa programme , 1999 .

[7]  Ian Cooper,et al.  Which focus for building assessment methods – environmental performance or sustainability? , 1999 .

[8]  G.T.A. Smeltzer,et al.  Future studies in construction , 1994 .

[9]  Adnan Enshassi Construction projects and the environment in Palestine , 1997 .

[10]  Jean Jinghan Chen,et al.  Sustainability and the impact of Chinese policy initiatives upon construction , 1999 .

[11]  E. Goldsmith A Blueprint for Survival , 1972 .

[12]  Amitava Deb,et al.  Sustainable cities in developing countries , 1998 .

[13]  M. Glaumann,et al.  Evaluation of green buildings in Sweden , 1999 .

[14]  George Ofori,et al.  Sustainable construction: principles and a framework for attainment - comment , 1998 .

[15]  Raymond J. Cole,et al.  Building environmental assessment methods: clarifying intentions , 1999 .

[16]  Raymond J. Cole,et al.  Customizing and using GBTool: two case-study projects , 1999 .

[17]  O. O. Faniran,et al.  Minimizing waste on construction project sites , 1998 .

[18]  Dieter Holm,et al.  Energy impact analysis of building construction as applied to South Africa , 1999 .

[19]  Rick Ball,et al.  Developers, regeneration and sustainability issues in the reuse of vacant industrial buildings , 1999 .

[20]  A. Maddison GROWTH AND SLOWDOWN IN ADVANCED CAPITALIST ECONOMIES - TECHNIQUES OF QUANTITATIVE ASSESSMENT , 1987 .

[21]  Richard Burton,et al.  The Use of Roundwood Thinnings in Buildings : A Case Study , 1998 .

[22]  E. Barbier,et al.  Blueprint for a green economy , 1989 .

[23]  Niklaus Kohler,et al.  The relevance of Green Building Challenge: an observer's perspective , 1999 .

[24]  Nobuyuki Kimata Japanese expectations for green building assessments , 1999 .

[25]  Paul Bowen,et al.  Sustainable construction: principles and a framework for attainment , 1997 .

[26]  Brian Edwards Towards sustainable architecture : European directives and building design , 1995 .

[27]  Nils Larsson,et al.  GBC '98 and GBTool: background , 1999 .

[28]  Nils Larsson Development of a building performance rating and labelling system in Canada , 1999 .

[29]  Gilbert Lissens,et al.  Bioscope : a model combining Markov-chain theory and input-output table data to estimate the CO2 content of final demand , 1996 .

[30]  Charles J. Kibert,et al.  Strategies for successful construction and demolition waste recycling operations , 1997 .

[31]  Drury B. Crawley,et al.  Building environmental assessment methods: applications and development trends , 1999 .

[32]  William E. Rees,et al.  The built environment and the ecosphere: a global perspective , 1999 .

[33]  A. B. Ngowi,et al.  Is construction procurement a key to sustainable development , 1998 .

[34]  Ranko Bon,et al.  What do we mean by building technology , 1991 .

[35]  Raymond J. Cole,et al.  Emerging trends in building environmental assessment methods , 1998 .

[36]  Charles J. Kibert,et al.  Developing indicators of sustainability: US experience , 1998 .

[37]  S. Kuznets,et al.  Toward a theory of economic growth : with Reflections on the economic growth of modern nations , 1968 .

[38]  Terry Thomas,et al.  Domestic water supply using rainwater harvesting , 1998 .

[39]  Ranko Bon The Future of International Construction , 2000 .

[40]  Steve Curwell,et al.  The Green Building Challenge in the UK , 1999 .

[41]  Ranko Bon,et al.  The Future of International Construction , 2000 .

[42]  M. T Brown,et al.  Embodied energy analysis and EMERGY analysis: a comparative view , 1996 .

[43]  Ian Cooper,et al.  The implications of urban sustainability , 1998 .

[44]  Clive B. Beggs,et al.  Is solar air conditioning feasible , 1999 .

[45]  Joel Ann Todd,et al.  Regional and cultural issues in environmental performance assessment for buildings , 1999 .

[46]  N. Hawkes The World in 2020 , 1968, Nature.