A 120 dB dynamic-range radiation-tolerant charge-to-digital converter for radiation monitoring
暂无分享,去创建一个
[1] T. Calin,et al. Upset hardened memory design for submicron CMOS technology , 1996 .
[2] A. Brokaw,et al. A simple three-terminal IC bandgap reference , 1974 .
[3] Federico Faccio,et al. Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the LHC experiments: practical design aspects , 1999 .
[4] R. Plassche. A sigma-delta modulator as an A/D converter , 1978 .
[5] Edward G. Shapiro. Mosfet Current-to-Frequency Converter with a Linear Sub Picoampere-to-Microampere Range , 1971 .
[6] Gabor C. Temes,et al. A 16-bit low-voltage CMOS A/D converter , 1987 .
[7] R. Kluit,et al. A Radiation Hard Bandgap Reference Circuit in a Standard 0.13 $\mu$m CMOS Technology , 2007, IEEE Transactions on Nuclear Science.
[8] Gabor C. Temes,et al. Random error effects in matched MOS capacitors and current sources , 1984 .
[9] F H Wells,et al. A wide range digitizer for direct coupled analogue signals , 1968 .
[10] Christos Zamantzas,et al. Single Gain Radiation Tolerant LHC Beam Loss Acquisition Card , 2007 .
[11] G.C. Temes,et al. A low-power 22-bit incremental ADC , 2006, IEEE Journal of Solid-State Circuits.
[12] B. Dehning,et al. Beam loss monitoring system for the LHC , 2005, IEEE Nuclear Science Symposium Conference Record, 2005.
[13] Ana Rusu,et al. A Low-Power CT Incremental 3rd Order ΣΔ ADC for Biosensor Applications , 2013, IEEE Trans. Circuits Syst. I Regul. Pap..
[14] C. Zamantzas,et al. An FPGA Based Implementation for Real-Time Processing of the LHC Beam Loss Monitoring System's Data , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.
[15] R. Koga,et al. Application of hardness-by-design methodology to radiation-tolerant ASIC technologies , 2000 .