Deployable Tensegrity Structures for Space Applications

This thesis deals with the development of deployable structures, based on the tensegrity concept, for applications in space. A state-of-the-art review of deployable masts and reflector antennas for space applications is presented. A comparison is made between the various reflector antennas in terms of deployed and stowed sizes, mass and accuracy. The key step in the design of tensegrity structures is the form-finding analysis. Several methods proposed for this step are scrutinised and classified into two groups, kinematic and static methods, and the advantages and disadvantages of each method are investigated. Two of the statical methods seems to be identical. It is concluded that several form-finding methods are available, but no single method is suitable for general tensegrities. The force method, for the analysis of the kinematic and static properties of large bar frameworks, is presented. The analysis and design of deployable tensegrity masts, with three struts per stage, is described. A routine for the manufacturing of physical models is proposed and evaluated. Different schemes for deployment are investigated. A way to deploy the struts using self-deployable hinges is introduced and demonstrated by fourand eight-stage mast models. Finally, the tensegrity mast is compared with an existing deployable mast with respect to stiffness. The mast is relatively stiff in the axial direction but very weak in bending. The requirements for a deployable reflector antenna used on small satellites are formulated. A concept, which uses a triangulated cable network to approximate the reflecting surface, is adopted. The kinematically determinate triangulated cable network is thoroughly analysed. The achievable surface accuracy of the net, both to systematic errors arising from the triangular approximation of the surface and random manufacturing errors, is evaluated. The underlying principles and the statical and kinematical properties of the new concept are presented. A physical model is built to analyse the feasibility of the concept and to test various deployment schemes. The scheme using telescopic struts are identified as the most suitable and a preliminary design an antenna, with a diameter of three metres, for a future space mission is performed. Numerical computations show that the antenna is stiff and extremely light.

[1]  J. Maxwell,et al.  The Scientific Papers of James Clerk Maxwell: On the Calculation of the Equilibrium and Stiffness of Frames , 1864 .

[2]  L. Moholy-Nagy Von Material zu Architektur , .

[3]  S. TIMOSHENKO,et al.  An Introduction to the Theory of Elasticity: , 1936, Nature.

[4]  A. Booth Numerical Methods , 1957, Nature.

[5]  R. Bracewell Antenna Tolerance Theory , 1960 .

[6]  Robert W. Marks,et al.  The Dymaxion world of Buckminster Fuller , 1960 .

[7]  J. Ruze Antenna tolerance theory—A review , 1966 .

[8]  D. Lafeber Soil structural concepts , 1966 .

[9]  K. Linkwitz,et al.  Einige Bemerkungen zur Berechnung von vorgespannten Seilnetzkonstruktionen , 1971 .

[10]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[11]  H. Schek The force density method for form finding and computation of general networks , 1974 .

[12]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[13]  S. V. Hoerner,et al.  Gravitational deformation and astigmatism of tiltable radio telescopes , 1975 .

[14]  A. Love Some highlights in reflector antenna development , 1976 .

[15]  H. Kenner Geodesic Math and How to Use It , 1976 .

[16]  Anthony Pugh,et al.  An Introduction to Tensegrity , 1976 .

[17]  C. Calladine Buckminster Fuller's “Tensegrity” structures and Clerk Maxwell's rules for the construction of stiff frames , 1978 .

[18]  J. Hedgepeth Accuracy potentials for large space antenna structures , 1980 .

[19]  P. Agrawal,et al.  Preliminary design of large reflectors with flat facets , 1981 .

[20]  R. J. Atkin,et al.  An introduction to the theory of elasticity , 1981 .

[21]  J. Hedgepeth Critical requirements for the design of large space structures , 1981 .

[22]  Y. Rahmat-Samii,et al.  Simple formulas for designing an offset multibeam parabolic reflector , 1981 .

[23]  J. Hedgepeth Accuracy potentials for large space antenna reflectors with passive structure , 1982 .

[24]  R. Connelly Rigidity and energy , 1982 .

[25]  J. Hedgepeth Influence of fabrication tolerances on the surface accuracy of large antenna structures , 1982 .

[26]  W. H. Greene,et al.  Effects of random member length errors on the accuracy and internal loads of truss antennas , 1983 .

[27]  R. Freeland Survey of deployable antenna concepts , 1983 .

[28]  J. M. Hedgepeth,et al.  Design concepts for large reflector antenna structures , 1983 .

[29]  W. Fichter Reduction of root-mean-square error in faceted space antennas , 1984 .

[30]  D. Purdy,et al.  Structures and mechanisms , 1984 .

[31]  Knud Pontoppidan Electrical consequences of mechanical antenna characteristics , 1984 .

[32]  D. P. Hearth,et al.  Flexibility of space structures makes design shaky , 1985 .

[33]  Hiroshi Furuya,et al.  Variable geometry truss and its application to deployable truss and space crane arm , 1985 .

[34]  S. Pellegrino,et al.  Matrix analysis of statically and kinematically indeterminate frameworks , 1986 .

[35]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[36]  Sergio Pellegrino,et al.  Mechanics of kinematically indeterminate structures , 1986 .

[37]  Sihem Belkacem Recherche de forme par relaxation dynamique des structures reticulees spatiales autocontraintes , 1987 .

[38]  G. G. Reibaldi,et al.  QUASAT program: The ESA reflector☆ , 1987 .

[39]  M Sun,et al.  A direct approach. , 1987, Science.

[40]  M. C. Bailey,et al.  The development of the 15-meter hoop column deployable antenna system with final structural and electromagnetic performance results , 1988 .

[41]  M. R. Barnes,et al.  Form-finding and analysis of prestressed nets and membranes , 1988 .

[42]  I. Ohtomo,et al.  Fan rib type deployable mesh antenna for satellite use , 1988 .

[43]  A. Roederer,et al.  Unfurlable satellite antennas: A review , 1989 .

[44]  E. Kuznetsov On immobile kinematic chains and a fallacious matrix analysis , 1989 .

[45]  C. L. Herstrom,et al.  Quasistatic Shape Adjustment of a 15-Meter-Diameter Space Antenna , 1989 .

[46]  J. Hedgepeth Structures for remotely deployable precision antennas , 1989 .

[47]  P. Becchi,et al.  Design and testing of a deployable, retrievable boom for space applications , 1989 .

[48]  David Georges Emmerich Self-Tensioning Spherical Structures: Single and Double Layer Spheroids , 1990 .

[49]  S. Pellegrino Analysis of prestressed mechanisms , 1990 .

[50]  P. Mantica,et al.  An inflatable parabolic reflector antenna: its realisation and electrical predictions , 1990 .

[51]  J. Mitsugi,et al.  Shape control of the tension truss antenna , 1990 .

[52]  Mohammed S El Naschie,et al.  Stress, Stability and Chaos in Structural Engineering: An Energy Approach , 1990 .

[53]  K. Miura,et al.  Concept of the tension truss antenna , 1990 .

[54]  R. Motro,et al.  Tensegrity Systems and Geodesic Domes , 1990 .

[55]  E. Kuznetsov Underconstrained structural systems , 1991 .

[56]  S. Pellegrino,et al.  First-order infinitesimal mechanisms , 1991 .

[57]  Martin M. Mikulas,et al.  Preliminary Design Considerations for 10-40 Meter-Diameter Precision Truss Reflectors , 1991 .

[58]  Neil Sclater,et al.  Mechanisms and Mechanical Devices Sourcebook , 1991 .

[59]  Rick Fleeter,et al.  Design of Low-Cost Spacecraft , 1991 .

[60]  S. Pellegrino,et al.  A Class of Tensegrity Domes , 1992 .

[61]  John D. Strock Development of Zero Coefficient of Thermal Expansion composite tubes for stable space structures , 1992, Defense, Security, and Sensing.

[62]  Hiroshi Furuya,et al.  Concept of Deployable Tensegrity Structures in Space Application , 1992 .

[63]  René Motro,et al.  Tensegrity Systems: The State of the Art , 1992 .

[64]  S. Pellegrino,et al.  Further remarks on first-order infinitesimal mechanisms , 1992 .

[65]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[66]  R. E. Freeland,et al.  In-step Inflatable Antenna Experiment , 1992 .

[67]  A. G. Russell Development of a Large Deployable Space Reflector Structure , 1992 .

[68]  B. Specht Deployment Simulation of a Parabolic Space Antenna with Rigid Panels , 1993 .

[69]  J. M. Hedgepeth,et al.  Technology Assessment and Development of Large Deployable Antennas , 1993 .

[70]  K. Miura Concepts of Deployable Space Structures , 1993 .

[71]  Richard A. Johnson Miller & Freund's Probability and Statistics for Engineers , 1993 .

[72]  A. Hanaor,et al.  Double-Layer Tensegrity Grids as Deployable Structures , 1993 .

[73]  S. Pellegrino Structural computations with the singular value decomposition of the equilibrium matrix , 1993 .

[74]  K. Brown,et al.  A design procedure for classical offset dual reflector antennas with circular apertures , 1994 .

[75]  R. Motro,et al.  Form finding numerical methods for tensegrity systems. , 1994 .

[76]  Zhong You,et al.  Deployable mesh reflector. , 1994 .

[77]  Robert Connelly,et al.  Higher-order rigidity—What is the proper definition? , 1994, Discret. Comput. Geom..

[78]  S. Grahn,et al.  ASTRID: An Attempt to Make the Microsatellite a Useful Tool for Space Science , 1995 .

[79]  Sergio Pellegrino,et al.  Large retractable appendages in spacecraft , 1995 .

[80]  Reg Connelly,et al.  Globally rigid Symmetric Tensegrities , 1995 .

[81]  R. Motro Structural Morphology Of Tensegrity Systems , 1996 .

[82]  Bin-Bing Wang A New Type of Self-Stressed Equilibrium Cable-Strut System Made of Reciprocal Prisms , 1996 .

[83]  K. C. Wu,et al.  Multicriterion preliminary design of a tetrahedral truss platform , 1996 .

[84]  R. E. Freeland,et al.  Development of flight hardware for a large, inflatable-deployable antenna experiment , 1996 .

[85]  K. L. Edwards Mechanisms & mechanical devices sourcebook , 1996 .

[86]  N. Vassart Recherche de forme et stabilité des systèmes réticulés spatiaux autocontraints , 1996 .

[87]  Haresh Lalvani,et al.  Origins Of Tensegrity: Views Of Emmerich, Fuller And Snelson , 1996 .

[88]  Simon D. Guest,et al.  A new concept for solid surface deployable antennas , 1996 .

[89]  R Vignjevic Spacecraft Structures and Mechanisms from Concept to Launch , 1997 .

[90]  Robert E. Skelton,et al.  Smart tensegrity structure for NESTOR , 1997, Smart Structures.

[91]  N. Vassart Recherche de forme et stabilité des systèmes réticulés autocontraints : applications aux systèmes de tenségrité , 1997 .

[92]  Sergio Pellegrino,et al.  Cable-Stiffened Pantographic Deployable Structures Part 2: Mesh Reflector , 1997 .

[93]  D. Ingber The architecture of life. , 1998, Scientific American.

[94]  Cornel Sultan,et al.  Force and torque smart tensegrity sensor , 1998, Smart Structures.

[95]  R. Connelly,et al.  Mathematics and Tensegrity , 1998, American Scientist.

[96]  Sergio Pellegrino,et al.  SHAPE OF DEPLOYABLE MEMBRANE REFLECTORS , 1998 .

[97]  M. M. Mikulas,et al.  Inflatable Deployable Space Structures Technology Summary , 1998 .

[98]  R. C. Bansal,et al.  Carbon Fiber Applications , 1998 .

[99]  Robert E. Skelton,et al.  Tendon control deployment of tensegrity structures , 1998, Smart Structures.

[100]  Sergio Pellegrino,et al.  Arm development: review of existing technologies , 1998 .

[101]  René Motro,et al.  Multiparametered Formfinding Method: Application to Tensegrity Systems , 1999 .

[102]  C. Sultan Modeling, design, and control of tensegrity structures with applications , 1999 .

[103]  Gunnar Tibert,et al.  Numerical analyses of cable roof structures , 1999 .

[104]  Klaus Linkwitz Formfinding by the “Direct Approach” and Pertinent Strategies for the Conceptual Design of Prestressed and Hanging Structures , 1999 .

[105]  Cornel Sultan,et al.  REDUCED PRESTRESSABILITY CONDITIONS FOR TENSEGRITY STRUCTURES , 1999 .

[106]  S. Pellegrino,et al.  AN INTRODUCTION TO THE ANALYSIS OF SYMMETRIC STRUCTURES , 1999 .

[107]  M.W. Thomson,et al.  The AstroMesh deployable reflector , 1999, IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010).

[108]  Yoshitaka Nishimura Static and dynamic analyses of tensegrity structures , 2000 .

[109]  Carl D. Crane,et al.  Innovative deployable antenna developments using tensegrity design , 2000 .

[110]  M. Bouderbala,et al.  Folding Tensegrity Systems , 2000 .

[111]  N. Hamamoto,et al.  Technology status of the 13 m aperture deployment antenna reflectors for engineering test satellite VIII , 2000 .

[112]  Sergio Pellegrino,et al.  SAR Advanced Deployable Structure , 2000 .

[113]  K. Tanizawa,et al.  Tension Truss Antenna — Concept, Reality and Future , 2000 .

[114]  R. Motro,et al.  Determination of mechanism’s order for kinematically and statically indetermined systems , 2000 .

[115]  Sergio Pellegrino,et al.  Small satellite deployment mechanisms , 2000 .

[116]  Carl D. Crane,et al.  A review of a family of self-deploying tensegrity structures with elastic ties , 2000 .

[117]  Jin Mitsugi,et al.  Deployment analysis of large space antenna using flexible multibody dynamics simulation 1 1 Paper IA , 2000 .

[118]  Sergio Pellegrino,et al.  Feasibility study of a deployable mesh reflector , 2000 .

[119]  S. Pellegrino,et al.  Bi-stable Composite Slit Tubes , 2000 .

[120]  F. Rimrott,et al.  Fundamentals of STEM Mechanics , 2000 .

[121]  H. Murakami Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion , 2001 .

[122]  Robert E. Skelton,et al.  An introduction to the mechanics of tensegrity structures , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[123]  S. Pellegrino,et al.  Feasibility study of a deployable mesh reflector: phase 2 , 2001 .

[124]  Kazuyuki Nakamura,et al.  Design and ground verification of large deployable reflector , 2001 .

[125]  H. Baier,et al.  Building blocks of large deployable precision membrane reflectors , 2001 .

[126]  Gyula Greschik,et al.  Sensitivity Study of Precision Pressurized Membrane Reflector Deformations , 2001 .

[127]  Christopher H. M. Jenkins,et al.  Gossamer spacecraft : membrane and inflatable structures technology for space applications , 2001 .

[128]  H. Murakami,et al.  Initial shape finding and modal analyses of cyclic right-cylindrical tensegrity modules , 2001 .

[129]  Sergio Pellegrino,et al.  Umbrella-type furlable reflector based on tension-truss concept , 2001 .

[130]  Sergio Pellegrino,et al.  FURLABLE REFLECTOR CONCEPT FOR SMALL SATELLITES , 2001 .

[131]  M. Lake Launching a 25-meter space telescope. Are astronauts a key to the next technically logical step after NGST? , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[132]  Sergio Pellegrino,et al.  Tape-Spring Rolling Hinges , 2002 .

[133]  Sergio Pellegrino,et al.  Deployable Tensegrity Reflectors for Small Satellites , 2002 .

[134]  Robert Connelly,et al.  TENSEGRITY STRUCTURES: WHY ARE THEY STABLE? , 2002 .

[135]  K. Wajima,et al.  Space VLBI Satellite HALCA and its Engineering Accomplishments , 2002 .

[136]  A. Tibert,et al.  Review of Form-Finding Methods for Tensegrity Structures , 2003 .

[137]  P. D. Patter,et al.  Analysis of Reflector Antennas , 2013 .