Mining temporal interval relational rules from temporal data

Temporal data mining is still one of important research topic since there are application areas that need knowledge from temporal data such as sequential patterns, similar time sequences, cyclic and temporal association rules, and so on. Although there are many studies for temporal data mining, they do not deal with discovering knowledge from temporal interval data such as patient histories, purchaser histories, and web logs etc. We propose a new temporal data mining technique that can extract temporal interval relation rules from temporal interval data by using Allen's theory: a preprocessing algorithm designed for the generalization of temporal interval data and a temporal relation algorithm for mining temporal relation rules from the generalized temporal interval data. This technique can provide more useful knowledge in comparison with conventional data mining techniques.

[1]  Gustavo Rossi,et al.  An approach to discovering temporal association rules , 2000, SAC '00.

[2]  Eamonn J. Keogh,et al.  Finding the most unusual time series subsequence: algorithms and applications , 2006, Knowledge and Information Systems.

[3]  Ming-Syan Chen,et al.  Progressive Partition Miner: An Efficient Algorithm for Mining General Temporal Association Rules , 2003, IEEE Trans. Knowl. Data Eng..

[4]  Keshri Verma,et al.  Efficient calendar based temporal association rule , 2005, SGMD.

[5]  John A. Keane,et al.  Mining association rules in temporal databases , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[6]  Yong-Joon Lee,et al.  A Knowledge Discovery Framework for Spatiotemporal Data Mining , 2006, J. Inf. Process. Syst..

[7]  Keun Ho Ryu,et al.  A spatiotemporal database model and query language , 2000, J. Syst. Softw..

[8]  Xiaodong Chen,et al.  A Framework for Temporal Data Mining , 1998, DEXA.

[9]  Maguelonne Teisseire,et al.  Mining spatio-temporal data , 2006, Journal of Intelligent Information Systems.

[10]  John F. Roddick,et al.  A Survey of Temporal Knowledge Discovery Paradigms and Methods , 2002, IEEE Trans. Knowl. Data Eng..

[11]  Yen-Liang Chen,et al.  Mining Temporal Patterns from Sequence Database of Interval-Based Events , 2006, FSKD.

[12]  Clu-istos Foutsos,et al.  Fast subsequence matching in time-series databases , 1994, SIGMOD '94.

[13]  Soon Myoung Chung,et al.  A scalable algorithm for mining maximal frequent sequences using a sample , 2008, Knowledge and Information Systems.

[14]  Alexander Tuzhilin,et al.  Discovering Unexpected Patterns in Temporal Data Using Temporal Logic , 1997, Temporal Databases, Dagstuhl.

[15]  Mohamad Saraee,et al.  Knowledge discovery in temporal databases , 1995 .

[16]  Ramez Elmasri,et al.  A consensus glossary of temporal database concepts , 1994, SGMD.

[17]  Keun Ho Ryu,et al.  Mining association rules on significant rare data using relative support , 2003, J. Syst. Softw..

[18]  Xifeng Yan,et al.  CloSpan: Mining Closed Sequential Patterns in Large Datasets , 2003, SDM.

[19]  P. S. Sastry,et al.  Discovering frequent episodes and learning hidden Markov models: a formal connection , 2005, IEEE Transactions on Knowledge and Data Engineering.

[20]  Sridhar Ramaswamy,et al.  On the Discovery of Interesting Patterns in Association Rules , 1998, VLDB.

[21]  Jun Wei Liu,et al.  Mining Association Rules in Spatio‐Temporal Data: An Analysis of Urban Socioeconomic and Land Cover Change , 2005, Trans. GIS.

[22]  Jiawei Han,et al.  Efficient mining of partial periodic patterns in time series database , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[23]  Ramakrishnan Srikant,et al.  Mining Sequential Patterns: Generalizations and Performance Improvements , 1996, EDBT.

[24]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[25]  Kyuseok Shim,et al.  High-Dimensional Similarity Joins , 2002, IEEE Trans. Knowl. Data Eng..

[26]  Kyuseok Shim,et al.  SPIRIT: Sequential Pattern Mining with Regular Expression Constraints , 1999, VLDB.

[27]  Keun Ho Ryu,et al.  Integration with spatiotemporal relationship operators in SQL , 1998, GIS '98.

[28]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[29]  Sridhar Ramaswamy,et al.  Cyclic association rules , 1998, Proceedings 14th International Conference on Data Engineering.

[30]  Arie Segev,et al.  A consensus glossary of temporal database concepts , 1994, SIGMOD 1994.

[31]  Sunita Sarawagi,et al.  Mining Surprising Patterns Using Temporal Description Length , 1998, VLDB.

[32]  Dimitrios Gunopulos,et al.  Discovering frequent arrangements of temporal intervals , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[33]  P. S. Sastry,et al.  Discovering Frequent Generalized Episodes When Events Persist for Different Durations , 2007, IEEE Transactions on Knowledge and Data Engineering.

[34]  John F. Roddick,et al.  An Updated Bibliography of Temporal, Spatial, and Spatio-temporal Data Mining Research , 2000, TSDM.

[35]  Kyuseok Shim,et al.  Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases , 1995, VLDB.

[36]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[37]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[38]  Thanaruk Theeramunkong,et al.  Fast Algorithms for Mining Generalized Frequent Patterns of Generalized Association Rules , 2004, IEICE Trans. Inf. Syst..

[39]  P. S. Sastry,et al.  A survey of temporal data mining , 2006 .

[40]  Richard T. Snodgrass,et al.  The temporal query language TQuel , 1987, TODS.

[41]  Jiawei Han,et al.  BIDE: efficient mining of frequent closed sequences , 2004, Proceedings. 20th International Conference on Data Engineering.

[42]  Sushil Jajodia,et al.  Temporal Databases: Research and Practice , 1998 .

[43]  Keun Ho Ryu,et al.  Temporal Pattern Mining of Moving Objects for Location-Based Service , 2002, DEXA.

[44]  Carolina Ruiz,et al.  Mining Expressive Temporal Associations from Complex Data , 2005, MLDM.

[45]  Chee Hang Park,et al.  Design and implementation of spatiotemporal database query processing system , 2002, J. Syst. Softw..