Time-Bounded Reachability for Monotonic Hybrid Automata: Complexity and Fixed Points

We study the time-bounded reachability problem for monotonic hybrid automata (MHA), i.e., rectangular hybrid automata for which the rate of each variable is either always non-negative or always non-positive. In this paper, we revisit the decidability results presented in [5] and show that the problem is NExpTime-complete. We also show that we can effectively compute fixed points that characterise the sets of states that are reachable (resp. co-reachable) within T time units from a given state.

[1]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[2]  Mario Bravetti,et al.  CONCUR 2009 - Concurrency Theory, 20th International Conference, CONCUR 2009, Bologna, Italy, September 1-4, 2009. Proceedings , 2009, CONCUR.

[3]  Thomas A. Henzinger,et al.  A User Guide to HyTech , 1995, TACAS.

[4]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[5]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[6]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[7]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[8]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[9]  Joël Ouaknine,et al.  Time-bounded Reachability for Hybrid Automata: Complexity and Fixpoints , 2012, ArXiv.

[10]  Saugata Basu,et al.  New results on quantifier elimination over real closed fields and applications to constraint databases , 1999, JACM.

[11]  Thomas A. Henzinger,et al.  A classification of symbolic transition systems , 2000, TOCL.

[12]  Roberto Bagnara,et al.  The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems , 2006, Sci. Comput. Program..

[13]  Joël Ouaknine,et al.  On Reachability for Hybrid Automata over Bounded Time , 2011, ICALP.

[14]  Joël Ouaknine,et al.  Time-Bounded Verification , 2009, CONCUR.

[15]  Joël Ouaknine,et al.  Alternating Timed Automata over Bounded Time , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[16]  Robert L. Grossman,et al.  Timed Automata , 1999, CAV.

[17]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[18]  Sumit Kumar Jha,et al.  Reachability for Linear Hybrid Automata Using Iterative Relaxation Abstraction , 2007, HSCC.

[19]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.