Dissipative Emergence of Inflation from Quasi-Cyclic Universe

Inflationary models, especially those with plateau-type potentials, are consistent with the cosmological data, but inflation itself does not resolve the initial singularity. This singularity is resolved, for example, by the idea of the quantum creation of the Universe from nothing such as the tunneling and no-boundary proposals. The simplest one predicts a closed Universe. Motivated by these facts, we investigate the classical dynamics of a closed Universe with a plateau-type potential. Depending on the initial inflaton field value, the Universe can undergo a variety of events: an immediate Big Crunch, a bounce or cyclic phase, and inflation. Although the non-inflationary solutions may appear irrelevant to our Universe, they can be turned into a single or multiple bounces followed by inflation, taking into account the interactions necessary for the reheating of the Universe after inflation. Thus, the dissipative mechanism in our setup explains both the graceful entry to and exit from inflation and gives us an indirect observational handle on the Universe just after creation. We also comment on the implications of these solutions on the probabilistic interpretations of the wave function of the Universe.

[1]  F. Takahashi,et al.  Dissipative Genesis of the Inflationary Universe , 2023, 2305.02366.

[2]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters , 2023, The Astrophysical Journal.

[3]  Pablo Vera Alfaro,et al.  The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V , 2023, 2301.07688.

[4]  S. Mukohyama,et al.  No smooth spacetime in Lorentzian quantum cosmology and trans-Planckian physics , 2022, Physical Review D.

[5]  M. Hazumi,et al.  Planck and BICEP/Keck Array 2018 constraints on primordial gravitational waves and perspectives for future B -mode polarization measurements , 2022, Physical Review D.

[6]  S. Mukohyama,et al.  DeWitt wave function in Hořava-Lifshitz cosmology with tensor perturbation , 2022, Journal of Cosmology and Astroparticle Physics.

[7]  S. Mukohyama,et al.  DeWitt boundary condition is consistent in Hořava-Lifshitz quantum gravity , 2021, Physics Letters B.

[8]  I. Valenzuela,et al.  Lectures on the Swampland Program in String Compactifications , 2021, Physics Reports.

[9]  R. B. Barreiro,et al.  Improved limits on the tensor-to-scalar ratio using BICEP and Planck , 2021, 2112.07961.

[10]  R. W. Ogburn,et al.  Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. , 2021, Physical review letters.

[11]  H. Veermäe,et al.  Tachyonic preheating in plateau inflation , 2021, Journal of Cosmology and Astroparticle Physics.

[12]  P. Graham,et al.  Warming up cold inflation , 2021, Journal of Cosmology and Astroparticle Physics.

[13]  J. Lehners Wave function of simple universes analytically continued from negative to positive potentials , 2021, Physical Review D.

[14]  M. Laine,et al.  Minimal warm inflation with complete medium response , 2021, Journal of Cosmology and Astroparticle Physics.

[15]  H. Veermäe,et al.  Tachyonic preheating in Palatini R 2 inflation , 2021, Journal of Cosmology and Astroparticle Physics.

[16]  W. Valkenburg,et al.  CosmoLattice , 2021, 2102.01031.

[17]  P. Graham,et al.  Dark energy radiation , 2020, Physical Review D.

[18]  O. Janssen,et al.  Slow-roll approximation in quantum cosmology , 2020, 2009.06282.

[19]  W. Valkenburg,et al.  The art of simulating the early universe. Part I. Integration techniques and canonical cases , 2020, 2006.15122.

[20]  T. Terada,et al.  Swampland constraints on no-boundary quantum cosmology , 2020, Journal of High Energy Physics.

[21]  David Sloan,et al.  T -model inflation and bouncing cosmology , 2019, Physical Review D.

[22]  C. Vafa,et al.  Trans-Planckian Censorship and the Swampland , 2019, Journal of High Energy Physics.

[23]  A. Di Tucci,et al.  No-boundary prescriptions in Lorentzian quantum cosmology , 2019, Physical Review D.

[24]  J. Soda,et al.  Birth of de Sitter universe from a time crystal universe , 2019, Physical Review D.

[25]  F. Takahashi,et al.  Non-singular bouncing cosmology with positive spatial curvature and flat scalar potential , 2019, Physics Letters B.

[26]  T. Damour,et al.  Quantum instability of an oscillating universe , 2019, Physical Review D.

[27]  Tom Rudelius Conditions for (no) eternal inflation , 2019, Journal of Cosmology and Astroparticle Physics.

[28]  T. Hertog,et al.  No-boundary proposal in biaxial Bianchi IX minisuperspace , 2019, Physical Review D.

[29]  A. Di Tucci,et al.  No-Boundary Proposal as a Path Integral with Robin Boundary Conditions. , 2019, Physical review letters.

[30]  F. Takahashi,et al.  ALP inflation and Big Bang on Earth , 2019, Journal of High Energy Physics.

[31]  A. Vilenkin,et al.  Tunneling wave function of the universe. II. The backreaction problem , 2018, Physical Review D.

[32]  J. Hartle,et al.  What is the no-boundary wave function of the Universe? , 2018, Physical Review D.

[33]  Christoph Roupec,et al.  Further Refining the de Sitter Swampland Conjecture , 2018, Fortschritte der Physik.

[34]  H. Ooguri,et al.  Distance and de Sitter conjectures on the Swampland , 2018, Physics Letters B.

[35]  E. Sfakianakis,et al.  Universality and scaling in multi-field α-attractor preheating , 2018, Journal of Cosmology and Astroparticle Physics.

[36]  Krzysztof Turzy'nski,et al.  Floquet analysis of self-resonance in single-field models of inflation , 2018, Physics Letters B.

[37]  S. Garg,et al.  Bounds on slow roll and the de Sitter Swampland , 2018, Journal of High Energy Physics.

[38]  M. Bojowald,et al.  Loops Rescue the No-Boundary Proposal. , 2018, Physical review letters.

[39]  A. Vilenkin,et al.  Tunneling wave function of the universe , 2018, Physical Review D.

[40]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[41]  F. Denef,et al.  de Sitter swampland conjecture and the Higgs potential , 2018, Physical Review D.

[42]  D. Andriot On the de Sitter swampland criterion , 2018, Physics Letters B.

[43]  K. Mukaida,et al.  Gauge field and fermion production during axion inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[44]  Hirosi Ooguri,et al.  De Sitter Space and the Swampland , 2018, 1806.08362.

[45]  J. Lehners,et al.  Unstable no-boundary fluctuations from sums over regular metrics , 2018, Physical Review D.

[46]  N. Turok,et al.  Inconsistencies of the New No-Boundary Proposal , 2018, Universe.

[47]  J. Hartle,et al.  Damped Perturbations in the No-Boundary State. , 2018, Physical review letters.

[48]  M. Amin,et al.  Self-resonance after inflation: Oscillons, transients, and radiation domination , 2017, 1710.06851.

[49]  Andrei Linde On the Problem of Initial Conditions for Inflation , 2017, Foundations of Physics.

[50]  N. Turok,et al.  No rescue for the no boundary proposal: Pointers to the future of quantum cosmology , 2017, 1708.05104.

[51]  M. Yamazaki,et al.  Pure Natural Inflation , 2017, 1706.08522.

[52]  A. Myers,et al.  The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of baryon acoustic oscillations between redshift 0.8 and 2.2 , 2017, 1705.06373.

[53]  K. Turzyński,et al.  On preheating in α -attractor models of inflation , 2018 .

[54]  J. Hartle,et al.  Real no-boundary wave function in Lorentzian quantum cosmology , 2017, 1705.05340.

[55]  N. Turok,et al.  No Smooth Beginning for Spacetime. , 2017, Physical review letters.

[56]  J. García-Bellido,et al.  Gravitational waves at interferometer scales and primordial black holes in axion inflation , 2016, 1610.03763.

[57]  M. Peloso,et al.  Rolling axions during inflation: perturbativity and signatures , 2016, 1606.00459.

[58]  Andrei Linde,et al.  Cosmological attractors and asymptotic freedom of the inflaton field , 2016, 1604.00444.

[59]  Ø. Grøn Warm Inflation , 2016 .

[60]  A. Westphal,et al.  Pole inflation — Shift symmetry and universal corrections , 2015, 1507.02277.

[61]  Andrei Linde,et al.  α-attractors: Planck, LHC and dark energy , 2015, 1506.01708.

[62]  J. Lehners New ekpyrotic quantum cosmology , 2015, 1504.02467.

[63]  Andrei Linde,et al.  Unity of cosmological inflation attractors. , 2015, Physical review letters.

[64]  E. Sfakianakis,et al.  Gauge-preheating and the end of axion inflation , 2015, 1502.06506.

[65]  J. Lehners Classical inflationary and ekpyrotic universes in the no-boundary wavefunction , 2015, 1502.00629.

[66]  A. Westphal,et al.  Challenges for large-field inflation and moduli stabilization , 2015, 1501.05812.

[67]  F. Takahashi,et al.  Elliptic inflation: interpolating from natural inflation to R2-inflation , 2015, 1501.02354.

[68]  A. Vilenkin,et al.  Stabilizing oscillating universes against quantum decay , 2014, 1407.5361.

[69]  J. Lehners,et al.  On the creation of the universe via ekpyrotic instantons , 2014, 1406.5896.

[70]  A. Westphal,et al.  Disentangling the f(R)-duality , 2014, 1411.6010.

[71]  H. Abe,et al.  Illustrating SUSY breaking effects on various inflation mechanisms , 2014, 1408.4875.

[72]  M. Takimoto,et al.  Axion models with high scale inflation , 2014, 1407.7465.

[73]  J. Lehners,et al.  On the no-boundary proposal for ekpyrotic and cyclic cosmologies , 2014, 1407.4814.

[74]  T. Yanagida,et al.  Discovery of large scale tensor mode and chaotic inflation in supergravity , 2014, 1403.4729.

[75]  Andrei Linde,et al.  Superconformal inflationary α-attractors , 2013, 1311.0472.

[76]  Andrei Linde,et al.  Minimal Supergravity Models of Inflation , 2013, 1307.7696.

[77]  Andrei Linde,et al.  Universality class in conformal inflation , 2013, 1306.5220.

[78]  A. Vilenkin,et al.  Collapse of simple harmonic universe , 2011, 1110.4096.

[79]  A. Berera,et al.  Shear viscous effects on the primordial power spectrum from warm inflation , 2011, 1106.0701.

[80]  M. Shaposhnikov,et al.  Higgs inflation: consistency and generalisations , 2010, 1008.5157.

[81]  G. Moore,et al.  The sphaleron rate in SU(N) gauge theory , 2010, 1011.1167.

[82]  L. Sorbo,et al.  Naturally inflating on steep potentials through electromagnetic dissipation , 2009, 0908.4089.

[83]  I. Moss,et al.  Density fluctuations from warm inflation , 2009, 0905.3500.

[84]  A. Mazumdar,et al.  Inflation with a negative cosmological constant , 2009, 0901.4930.

[85]  Tirthabir Biswas,et al.  Cyclic Inflation , 2008, 0812.3182.

[86]  J. Hartle,et al.  Classical universes of the no-boundary quantum state , 2008, 0803.1663.

[87]  M. Shaposhnikov,et al.  The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.

[88]  R. Tavakol,et al.  An Emergent Universe from a loop , 2005, astro-ph/0502589.

[89]  Andrei Linde Creation of a compact topologically nontrivial inflationary universe , 2004, hep-th/0408164.

[90]  G. Moore Do we Understand the Sphaleron Rate , 2000, hep-ph/0009161.

[91]  L. Yaffe,et al.  Nonperturbative dynamics of hot non-Abelian gauge fields: Beyond the leading log approximation , 1999, hep-ph/9912305.

[92]  L. Yaffe,et al.  High temperature color conductivity at next-to-leading log order , 1999, hep-ph/9912306.

[93]  McGill,et al.  Chern-Simons number diffusion and hard thermal loops on the lattice , 1999, hep-ph/9907545.

[94]  D. H. Coule,et al.  Quantum cosmology and open universes , 1999, gr-qc/9905056.

[95]  A. Starobinsky,et al.  Towards the theory of reheating after inflation , 1997, hep-ph/9704452.

[96]  O. Philipsen The sphaleron rate in the “symmetric” electroweak phase , 1995, hep-ph/9506478.

[97]  Brandenberger,et al.  Universe reheating after inflation. , 1995, Physical review. D, Particles and fields.

[98]  Mottola,et al.  Sphalerons and axion dynamics in high-temperature QCD. , 1991, Physical review. D, Particles and fields.

[99]  J. Frieman,et al.  Natural inflation with pseudo Nambu-Goldstone bosons. , 1990, Physical review letters.

[100]  Brandenberger,et al.  Particle production during out-of-equilibrium phase transitions. , 1990, Physical review. D, Particles and fields.

[101]  A. Dolgov,et al.  ON PARTICLE CREATION BY A TIME DEPENDENT SCALAR FIELD , 1989 .

[102]  A. Vilenkin,et al.  Quantum cosmology and the initial state of the Universe. , 1988, Physical review. D, Particles and fields.

[103]  Vachaspati.,et al.  Uniqueness of the tunneling wave function of the Universe. , 1988, Physical review. D, Particles and fields.

[104]  A. Vilenkin,et al.  Boundary conditions in quantum cosmology. , 1986, Physical review. D, Particles and fields.

[105]  P. González-Díaz On the wave function of the universe , 1985 .

[106]  V. Rubakov Quantum Mechanics in the Tunneling Universe , 1984 .

[107]  Andrei Linde Quantum creation of the inflationary universe , 1984 .

[108]  Andrei Linde,et al.  The inflationary Universe , 1984 .

[109]  S. Hawking The Quantum State of the Universe , 1984 .

[110]  Y. Zel’dovich,et al.  Quantum creation of a universe with nontrivial topology , 1984 .

[111]  A. Vilenkin Quantum Creation of Universes , 1984 .

[112]  S. Hawking The Boundary Conditions of the Universe , 1981 .

[113]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[114]  E. Harrison Quantum Cosmology , 2022, Nature.

[115]  B. Dewitt Quantum Theory of Gravity. I. The Canonical Theory , 1967 .

[116]  R. Tolman On the theoretical requirements for a periodic behaviour of the universe , 1931 .