Dissipative Emergence of Inflation from Quasi-Cyclic Universe
暂无分享,去创建一个
[1] F. Takahashi,et al. Dissipative Genesis of the Inflationary Universe , 2023, 2305.02366.
[2] Edward J. Wollack,et al. The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters , 2023, The Astrophysical Journal.
[3] Pablo Vera Alfaro,et al. The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V , 2023, 2301.07688.
[4] S. Mukohyama,et al. No smooth spacetime in Lorentzian quantum cosmology and trans-Planckian physics , 2022, Physical Review D.
[5] M. Hazumi,et al. Planck and BICEP/Keck Array 2018 constraints on primordial gravitational waves and perspectives for future B -mode polarization measurements , 2022, Physical Review D.
[6] S. Mukohyama,et al. DeWitt wave function in Hořava-Lifshitz cosmology with tensor perturbation , 2022, Journal of Cosmology and Astroparticle Physics.
[7] S. Mukohyama,et al. DeWitt boundary condition is consistent in Hořava-Lifshitz quantum gravity , 2021, Physics Letters B.
[8] I. Valenzuela,et al. Lectures on the Swampland Program in String Compactifications , 2021, Physics Reports.
[9] R. B. Barreiro,et al. Improved limits on the tensor-to-scalar ratio using BICEP and Planck , 2021, 2112.07961.
[10] R. W. Ogburn,et al. Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. , 2021, Physical review letters.
[11] H. Veermäe,et al. Tachyonic preheating in plateau inflation , 2021, Journal of Cosmology and Astroparticle Physics.
[12] P. Graham,et al. Warming up cold inflation , 2021, Journal of Cosmology and Astroparticle Physics.
[13] J. Lehners. Wave function of simple universes analytically continued from negative to positive potentials , 2021, Physical Review D.
[14] M. Laine,et al. Minimal warm inflation with complete medium response , 2021, Journal of Cosmology and Astroparticle Physics.
[15] H. Veermäe,et al. Tachyonic preheating in Palatini R 2 inflation , 2021, Journal of Cosmology and Astroparticle Physics.
[16] W. Valkenburg,et al. CosmoLattice , 2021, 2102.01031.
[17] P. Graham,et al. Dark energy radiation , 2020, Physical Review D.
[18] O. Janssen,et al. Slow-roll approximation in quantum cosmology , 2020, 2009.06282.
[19] W. Valkenburg,et al. The art of simulating the early universe. Part I. Integration techniques and canonical cases , 2020, 2006.15122.
[20] T. Terada,et al. Swampland constraints on no-boundary quantum cosmology , 2020, Journal of High Energy Physics.
[21] David Sloan,et al. T -model inflation and bouncing cosmology , 2019, Physical Review D.
[22] C. Vafa,et al. Trans-Planckian Censorship and the Swampland , 2019, Journal of High Energy Physics.
[23] A. Di Tucci,et al. No-boundary prescriptions in Lorentzian quantum cosmology , 2019, Physical Review D.
[24] J. Soda,et al. Birth of de Sitter universe from a time crystal universe , 2019, Physical Review D.
[25] F. Takahashi,et al. Non-singular bouncing cosmology with positive spatial curvature and flat scalar potential , 2019, Physics Letters B.
[26] T. Damour,et al. Quantum instability of an oscillating universe , 2019, Physical Review D.
[27] Tom Rudelius. Conditions for (no) eternal inflation , 2019, Journal of Cosmology and Astroparticle Physics.
[28] T. Hertog,et al. No-boundary proposal in biaxial Bianchi IX minisuperspace , 2019, Physical Review D.
[29] A. Di Tucci,et al. No-Boundary Proposal as a Path Integral with Robin Boundary Conditions. , 2019, Physical review letters.
[30] F. Takahashi,et al. ALP inflation and Big Bang on Earth , 2019, Journal of High Energy Physics.
[31] A. Vilenkin,et al. Tunneling wave function of the universe. II. The backreaction problem , 2018, Physical Review D.
[32] J. Hartle,et al. What is the no-boundary wave function of the Universe? , 2018, Physical Review D.
[33] Christoph Roupec,et al. Further Refining the de Sitter Swampland Conjecture , 2018, Fortschritte der Physik.
[34] H. Ooguri,et al. Distance and de Sitter conjectures on the Swampland , 2018, Physics Letters B.
[35] E. Sfakianakis,et al. Universality and scaling in multi-field α-attractor preheating , 2018, Journal of Cosmology and Astroparticle Physics.
[36] Krzysztof Turzy'nski,et al. Floquet analysis of self-resonance in single-field models of inflation , 2018, Physics Letters B.
[37] S. Garg,et al. Bounds on slow roll and the de Sitter Swampland , 2018, Journal of High Energy Physics.
[38] M. Bojowald,et al. Loops Rescue the No-Boundary Proposal. , 2018, Physical review letters.
[39] A. Vilenkin,et al. Tunneling wave function of the universe , 2018, Physical Review D.
[40] J. Aumont,et al. Planck2018 results , 2018, Astronomy & Astrophysics.
[41] F. Denef,et al. de Sitter swampland conjecture and the Higgs potential , 2018, Physical Review D.
[42] D. Andriot. On the de Sitter swampland criterion , 2018, Physics Letters B.
[43] K. Mukaida,et al. Gauge field and fermion production during axion inflation , 2018, Journal of Cosmology and Astroparticle Physics.
[44] Hirosi Ooguri,et al. De Sitter Space and the Swampland , 2018, 1806.08362.
[45] J. Lehners,et al. Unstable no-boundary fluctuations from sums over regular metrics , 2018, Physical Review D.
[46] N. Turok,et al. Inconsistencies of the New No-Boundary Proposal , 2018, Universe.
[47] J. Hartle,et al. Damped Perturbations in the No-Boundary State. , 2018, Physical review letters.
[48] M. Amin,et al. Self-resonance after inflation: Oscillons, transients, and radiation domination , 2017, 1710.06851.
[49] Andrei Linde. On the Problem of Initial Conditions for Inflation , 2017, Foundations of Physics.
[50] N. Turok,et al. No rescue for the no boundary proposal: Pointers to the future of quantum cosmology , 2017, 1708.05104.
[51] M. Yamazaki,et al. Pure Natural Inflation , 2017, 1706.08522.
[52] A. Myers,et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of baryon acoustic oscillations between redshift 0.8 and 2.2 , 2017, 1705.06373.
[53] K. Turzyński,et al. On preheating in α -attractor models of inflation , 2018 .
[54] J. Hartle,et al. Real no-boundary wave function in Lorentzian quantum cosmology , 2017, 1705.05340.
[55] N. Turok,et al. No Smooth Beginning for Spacetime. , 2017, Physical review letters.
[56] J. García-Bellido,et al. Gravitational waves at interferometer scales and primordial black holes in axion inflation , 2016, 1610.03763.
[57] M. Peloso,et al. Rolling axions during inflation: perturbativity and signatures , 2016, 1606.00459.
[58] Andrei Linde,et al. Cosmological attractors and asymptotic freedom of the inflaton field , 2016, 1604.00444.
[59] Ø. Grøn. Warm Inflation , 2016 .
[60] A. Westphal,et al. Pole inflation — Shift symmetry and universal corrections , 2015, 1507.02277.
[61] Andrei Linde,et al. α-attractors: Planck, LHC and dark energy , 2015, 1506.01708.
[62] J. Lehners. New ekpyrotic quantum cosmology , 2015, 1504.02467.
[63] Andrei Linde,et al. Unity of cosmological inflation attractors. , 2015, Physical review letters.
[64] E. Sfakianakis,et al. Gauge-preheating and the end of axion inflation , 2015, 1502.06506.
[65] J. Lehners. Classical inflationary and ekpyrotic universes in the no-boundary wavefunction , 2015, 1502.00629.
[66] A. Westphal,et al. Challenges for large-field inflation and moduli stabilization , 2015, 1501.05812.
[67] F. Takahashi,et al. Elliptic inflation: interpolating from natural inflation to R2-inflation , 2015, 1501.02354.
[68] A. Vilenkin,et al. Stabilizing oscillating universes against quantum decay , 2014, 1407.5361.
[69] J. Lehners,et al. On the creation of the universe via ekpyrotic instantons , 2014, 1406.5896.
[70] A. Westphal,et al. Disentangling the f(R)-duality , 2014, 1411.6010.
[71] H. Abe,et al. Illustrating SUSY breaking effects on various inflation mechanisms , 2014, 1408.4875.
[72] M. Takimoto,et al. Axion models with high scale inflation , 2014, 1407.7465.
[73] J. Lehners,et al. On the no-boundary proposal for ekpyrotic and cyclic cosmologies , 2014, 1407.4814.
[74] T. Yanagida,et al. Discovery of large scale tensor mode and chaotic inflation in supergravity , 2014, 1403.4729.
[75] Andrei Linde,et al. Superconformal inflationary α-attractors , 2013, 1311.0472.
[76] Andrei Linde,et al. Minimal Supergravity Models of Inflation , 2013, 1307.7696.
[77] Andrei Linde,et al. Universality class in conformal inflation , 2013, 1306.5220.
[78] A. Vilenkin,et al. Collapse of simple harmonic universe , 2011, 1110.4096.
[79] A. Berera,et al. Shear viscous effects on the primordial power spectrum from warm inflation , 2011, 1106.0701.
[80] M. Shaposhnikov,et al. Higgs inflation: consistency and generalisations , 2010, 1008.5157.
[81] G. Moore,et al. The sphaleron rate in SU(N) gauge theory , 2010, 1011.1167.
[82] L. Sorbo,et al. Naturally inflating on steep potentials through electromagnetic dissipation , 2009, 0908.4089.
[83] I. Moss,et al. Density fluctuations from warm inflation , 2009, 0905.3500.
[84] A. Mazumdar,et al. Inflation with a negative cosmological constant , 2009, 0901.4930.
[85] Tirthabir Biswas,et al. Cyclic Inflation , 2008, 0812.3182.
[86] J. Hartle,et al. Classical universes of the no-boundary quantum state , 2008, 0803.1663.
[87] M. Shaposhnikov,et al. The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.
[88] R. Tavakol,et al. An Emergent Universe from a loop , 2005, astro-ph/0502589.
[89] Andrei Linde. Creation of a compact topologically nontrivial inflationary universe , 2004, hep-th/0408164.
[90] G. Moore. Do we Understand the Sphaleron Rate , 2000, hep-ph/0009161.
[91] L. Yaffe,et al. Nonperturbative dynamics of hot non-Abelian gauge fields: Beyond the leading log approximation , 1999, hep-ph/9912305.
[92] L. Yaffe,et al. High temperature color conductivity at next-to-leading log order , 1999, hep-ph/9912306.
[93] McGill,et al. Chern-Simons number diffusion and hard thermal loops on the lattice , 1999, hep-ph/9907545.
[94] D. H. Coule,et al. Quantum cosmology and open universes , 1999, gr-qc/9905056.
[95] A. Starobinsky,et al. Towards the theory of reheating after inflation , 1997, hep-ph/9704452.
[96] O. Philipsen. The sphaleron rate in the “symmetric” electroweak phase , 1995, hep-ph/9506478.
[97] Brandenberger,et al. Universe reheating after inflation. , 1995, Physical review. D, Particles and fields.
[98] Mottola,et al. Sphalerons and axion dynamics in high-temperature QCD. , 1991, Physical review. D, Particles and fields.
[99] J. Frieman,et al. Natural inflation with pseudo Nambu-Goldstone bosons. , 1990, Physical review letters.
[100] Brandenberger,et al. Particle production during out-of-equilibrium phase transitions. , 1990, Physical review. D, Particles and fields.
[101] A. Dolgov,et al. ON PARTICLE CREATION BY A TIME DEPENDENT SCALAR FIELD , 1989 .
[102] A. Vilenkin,et al. Quantum cosmology and the initial state of the Universe. , 1988, Physical review. D, Particles and fields.
[103] Vachaspati.,et al. Uniqueness of the tunneling wave function of the Universe. , 1988, Physical review. D, Particles and fields.
[104] A. Vilenkin,et al. Boundary conditions in quantum cosmology. , 1986, Physical review. D, Particles and fields.
[105] P. González-Díaz. On the wave function of the universe , 1985 .
[106] V. Rubakov. Quantum Mechanics in the Tunneling Universe , 1984 .
[107] Andrei Linde. Quantum creation of the inflationary universe , 1984 .
[108] Andrei Linde,et al. The inflationary Universe , 1984 .
[109] S. Hawking. The Quantum State of the Universe , 1984 .
[110] Y. Zel’dovich,et al. Quantum creation of a universe with nontrivial topology , 1984 .
[111] A. Vilenkin. Quantum Creation of Universes , 1984 .
[112] S. Hawking. The Boundary Conditions of the Universe , 1981 .
[113] A. Starobinsky,et al. A new type of isotropic cosmological models without singularity , 1980 .
[114] E. Harrison. Quantum Cosmology , 2022, Nature.
[115] B. Dewitt. Quantum Theory of Gravity. I. The Canonical Theory , 1967 .
[116] R. Tolman. On the theoretical requirements for a periodic behaviour of the universe , 1931 .