Study and optimization of 2D matrix arrays for 3D ultrasound imaging

3D Ultrasound imaging is a fast-growing medical imaging modality. In addition to its numerous advantages (low cost, non-ionizing beam, portability) it allows to represent the anatomical structures in their natural form that is always three-dimensional. The relativelyslow mechanical scanning probes tend to be replaced by two-dimensional matrix arrays that are an extension in both lateral and elevation directions of the conventional 1D probe. This2D positioning of the elements allows the ultrasonic beam steering in the whole space. Usually, the piezoelectric elements of a 2D array probe are aligned on a regular grid and spaced out of a distance (the pitch) subject to the space sampling law (inter-element distancemust be shorter than a mid-wavelength) to limit the impact of grating lobes. This physical constraint leads to a multitude of small elements. The equivalent in 2D of a 1D probe of 128elements contains 128x128 = 16,384 elements. Connecting such a high number of elements is a real technical challenge as the number of channels in current ultrasound scanners rarely exceeds 256. The proposed solutions to control this type of probe implement multiplexing or elements number reduction techniques, generally using random selection approaches (« spars earray »). These methods suffer from low signal to noise ratio due to the energy loss linked to the small number of active elements. In order to limit the loss of performance, optimization remains the best solution. The first contribution of this thesis is an extension of the « sparse array » technique combined with an optimization method based on the simulated annealing algorithm. The proposed optimization reduces the required active element number according to the expected characteristics of the ultrasound beam and permits limiting the energy loss compared to the initial dense array probe.The second contribution is a completely new approach adopting a non-grid positioningof the elements to remove the grating lobes and to overstep the spatial sampling constraint. This new strategy allows the use of larger elements leading to a small number of necessaryelements for the same probe surface. The active surface of the array is maximized, whichresults in a greater output energy and thus a higher sensitivity. It also allows a greater scansector as the grating lobes are very small relative to the main lobe. The random choice of the position of the elements and their apodization (or weighting coefficient) is optimized by the simulated annealing.The proposed methods are systematically compared to the dense array by performing simulations under realistic conditions. These simulations show a real potential of the developed techniques for 3D imaging.A 2D probe of 8x24 = 192 elements was manufactured by Vermon (Vermon SA, Tours,France) to test the proposed methods in an experimental setting. The comparison between simulation and experimental results validate the proposed methods and prove their feasibility.

[1]  John R. Potter,et al.  Optimization and Beamforming of a Two Dimensional Sparse Array , 1998 .

[2]  Shiwei Zhou,et al.  High element count [3600], fully sampled, two dimensional transducer array , 2005, IEEE Ultrasonics Symposium, 2005..

[3]  F. Herth,et al.  Transthoracic Ultrasound , 2003, Respiration.

[4]  S. Holm,et al.  Properties of the beampattern of weight- and layout-optimized sparse arrays , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  L. S. Smith,et al.  Elevation performance of 1.25D and 1.5D transducer arrays , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  Piero Tortoli,et al.  Design of Optimal 2-D Nongrid Sparse Arrays for Medical Ultrasound , 2013, IEEE Transactions on Biomedical Engineering.

[7]  A. Trucco Weighting and thinning wide-band arrays by simulated annealing. , 2002, Ultrasonics.

[8]  Graham M. Treece,et al.  Engineering a freehand 3D ultrasound system , 2003, Pattern Recognit. Lett..

[9]  L. S. Smith,et al.  A 1.5D transducer for medical ultrasound , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[10]  Sverre Holm,et al.  1D- and 2D-Sparse-Array-Optimization , 1999 .

[11]  P. G. Barthe,et al.  Characterization of 1.5-D ultrasound transducer arrays , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[12]  Quing Zhu,et al.  Elevation beamforming performance of a 1.75 D array , 2001, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263).

[13]  Xavier Lurton,et al.  An Introduction to Underwater Acoustics: Principles and Applications , 2010 .

[14]  W. Steichen,et al.  A two-dimensional transducer array for real-time 3D medical ultrasound imaging , 1998, 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102).

[15]  Michel Bertrand,et al.  Ultrasonic texture motion analysis: theory and simulation , 1995, IEEE Trans. Medical Imaging.

[16]  Gregg E Trahey,et al.  Synthetic elevation beamforming and image acquisition capabilities using an 8 x 128 1.75D array. , 2003, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[17]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[18]  H. Torp,et al.  Which transducer array is best , 1995 .

[19]  Butrus T. Khuri-Yakub,et al.  Beamforming and hardware design for a multichannel front-end integrated circuit for real-time 3D catheter-based ultrasonic imaging , 2006, SPIE Medical Imaging.

[20]  R. E. Davidsen,et al.  Advances in two dimensional arrays for real time volumetric imaging , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[21]  Bodo Heimann,et al.  Rotationally acquired four-dimensional optical coherence tomography of embryonic chick hearts using retrospective gating on the common central A-scan. , 2011, Journal of biomedical optics.

[22]  A. Trucco,et al.  A stochastic approach to optimizing the aperture and the number of elements of an aperiodic array , 1996, OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean - Prospects for the 21st Century.

[23]  William E. Brant The Core Curriculum: Ultrasound , 2001 .

[24]  Chi Hyung Seo,et al.  A 256 x 256 2-D array transducer with row-column addressing for 3-D rectilinear imaging , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  J. Greenleaf,et al.  A study of two-dimensional array transducers for limited diffraction beams , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  E. Wiener-avnear,et al.  Simulations of circular 2D phase-array ultrasonic imaging transducers. , 2002, Ultrasonics.

[27]  Bin Chen,et al.  A novel method to design sparse linear arrays for ultrasonic phased array. , 2006, Ultrasonics.

[28]  Pierre-Jean Reissman,et al.  From simulated annealing to stochastic continuation: a new trend in combinatorial optimization , 2012, Journal of Global Optimization.

[29]  F. Quaglia,et al.  Modeling and simulation of ultrasound fields generated by 2D phased array transducers for medical applications , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[30]  Olivier Basset,et al.  ULTRASOUND IMAGE POST-PROCESSING – APPLICATION TO SEGMENTATION , 2007 .

[31]  G. Tupholme Generation of acoustic pulses by baffled plane pistons , 1969 .

[32]  O. Oralkan,et al.  Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[33]  Andrea Massa,et al.  Planar antenna array design with a multi‐purpose GA‐based procedure , 2002 .

[34]  P. Stepanishen Transient Radiation from Pistons in an Infinite Planar Baffle , 1970 .

[35]  Richard James Housden,et al.  Calibration of an orientation sensor for freehand 3D ultrasound and its use in a hybrid acquisition system , 2008, Biomedical engineering online.

[36]  O T von Ramm,et al.  Explososcan: A Parallel Processing Technique For High Speed Ultrasound Imaging With Linear Phased Arrays , 1985, Medical Imaging.

[37]  P. Pellegretti,et al.  An efficient 3D beamformer implementation for real-time 4D ultrasound systems deploying planar array probes , 2004, IEEE Ultrasonics Symposium, 2004.

[38]  Thornson Sintra Asm,et al.  A 128x4 CHANNELS 1.5D CURVED LINEAR ARRAY FOR MEDICAL IMAGING , 1995 .

[39]  Kesong Chen,et al.  Synthesis of Sparse Planar Arrays Using Modified Real Genetic Algorithm , 2007, IEEE Transactions on Antennas and Propagation.

[40]  A. Dallai,et al.  A reconfigurable and programmable FPGA-based system for nonstandard ultrasound methods , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[41]  Kesong Chen,et al.  Synthesis of Sparse Planar Arrays Using Modified Real Genetic Algorithm , 2007 .

[42]  Hirofumi Taki,et al.  High-resolution real-time three-dimensional acoustic imaging system with a reflector , 2007, Journal of Medical Ultrasonics.

[43]  K. Shung,et al.  The principle of multidimensional arrays. , 2002, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[44]  Giovanni Magenes,et al.  Simulating ultrasound fields for 2D phased-array probes design optimization , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[45]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[46]  Yih-Leong Chang,et al.  US-guided transthoracic cutting biopsy for peripheral thoracic lesions less than 3 cm in diameter. , 2000, Radiology.

[47]  A. Austeng,et al.  Sparse 2-D arrays for 3-D phased array imaging - design methods , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[48]  J C Bamber,et al.  Ultrasonic B-scanning: a computer simulation , 1980, Physics in medicine and biology.

[49]  Robert Rohling,et al.  Methods for segmenting curved needles in ultrasound images , 2006, Medical Image Anal..

[50]  F. Chavrier,et al.  1.5-D high intensity focused ultrasound array for non-invasive prostate cancer surgery , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[51]  Tsung O Cheng,et al.  Real-time 3-dimensional echocardiography: a review of the development of the technology and its clinical application. , 2005, Progress in cardiovascular diseases.

[52]  Yaowu Chen,et al.  Optimized simulated annealing algorithm for thinning and weighting large planar arrays , 2010, IEEE Journal of Oceanic Engineering.

[53]  K. Thomenius,et al.  Evolution of ultrasound beamformers , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[54]  G. Hayward,et al.  Aperiodic and deterministic 2D phased array structures for ultrasonic imaging , 2009, 2009 IEEE International Ultrasonics Symposium.

[55]  Piero Tortoli,et al.  Sparse array techniques for 2D array ultrasound imaging , 2012 .

[56]  P. Stepanishen The Time‐Dependent Force and Radiation Impedance on a Piston in a Rigid Infinite Planar Baffle , 1971 .

[57]  Sergio Sartori,et al.  Accuracy of transthoracic sonography in detection of pneumothorax after sonographically guided lung biopsy: prospective comparison with chest radiography. , 2007, AJR. American journal of roentgenology.

[58]  A. Trucco,et al.  Thinning and weighting of large planar arrays by simulated annealing , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[59]  Piero Tortoli,et al.  Optimized 2D array design for Ultrasound imaging , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[60]  Isabelle E. Magnin,et al.  Simulated annealing, acceleration techniques, and image restoration , 1999, IEEE Trans. Image Process..

[61]  Jørgen Arendt Jensen,et al.  Experimental ultrasound system for real-time synthetic imaging , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[62]  G.R. Lockwood,et al.  Broad-bandwidth radiation patterns of sparse two-dimensional vernier arrays , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[63]  Andrea Massa,et al.  Sidelobe reduction in sparse linear arrays by genetic algorithms , 2002 .

[64]  R. M. Schmitt,et al.  Optimization of random sparse 2-D transducer arrays for 3-D electronic beam steering and focusing , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[65]  Sayama-shi Saitama-ken,et al.  MATRIX ARRAY TRANSDUCER AND FLEXIBLE MATRIX ARRY TRANSDUCER , 1986 .

[66]  Aaron Fenster,et al.  A real-time biopsy needle segmentation technique using Hough transform. , 2003, Medical physics.

[67]  Sverre Holm,et al.  Sparse Sampling in Array Processing , 2001 .

[68]  Nicholas Ayache,et al.  Medical Image Analysis: Progress over Two Decades and the Challenges Ahead , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  J.T. Yen,et al.  2-D array for 3-D ultrasound imaging using synthetic aperture techniques , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[70]  G. Cincotti,et al.  Dense and sparse 2-D array radiation patterns in lossy media , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[71]  Travis N. Blalock,et al.  Experimental System Prototype of a Portable, Low-Cost, C-Scan Ultrasound Imaging Device , 2008, IEEE Transactions on Biomedical Engineering.

[72]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[73]  B. Savord,et al.  Fully sampled matrix transducer for real time 3D ultrasonic imaging , 2003, IEEE Symposium on Ultrasonics, 2003.

[74]  P. D. Hansen,et al.  Transthoracic hepatic radiofrequency ablation , 2004, Surgical Endoscopy And Other Interventional Techniques.

[75]  Christian Cachard,et al.  Model Fitting Using RANSAC for Surgical Tool Localization in 3-D Ultrasound Images , 2010, IEEE Transactions on Biomedical Engineering.

[76]  Marc C. Robini,et al.  Theoretically Grounded Acceleration Techniques for Simulated Annealing , 2013, Handbook of Optimization.

[77]  Aaron Fenster,et al.  Mechanically assisted 3D ultrasound guided prostate biopsy system. , 2008, Medical physics.

[78]  Jesse T Yen,et al.  Real-time rectilinear volumetric imaging using a periodic array. , 2002, Ultrasound in medicine & biology.

[79]  J. Gubernatis Marshall Rosenbluth and the Metropolis algorithma) , 2005 .

[80]  J. E. Gubernatisb Marshall Rosenbluth and the Metropolis algorithm a ... , 2005 .

[81]  Schlumberger Geco-Prakla OPTIMIZATION OF SPARSE ARRAYS BY AN IMPROVED SIMULATED ANNEALING ALGORITHM Jon-Fredrik Hopperstad , 1999 .

[82]  Gabor Fichtinger,et al.  A new scheme for curved needle segmentation in three-dimensional ultrasound images , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[83]  Vittorio Murino,et al.  Synthesis of unequally spaced arrays by simulated annealing , 1996, IEEE Trans. Signal Process..

[84]  Mingyue Ding,et al.  Needle Segmentation Using 3D Quick Randomized Hough Transform , 2008, 2008 First International Conference on Intelligent Networks and Intelligent Systems.

[85]  D.H. Turnbull,et al.  Beam steering with pulsed two-dimensional transducer arrays , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[86]  Piero Tortoli,et al.  Variable-size elements in 2D sparse arrays for 3D medical ultrasound , 2013, 2013 IEEE International Ultrasonics Symposium (IUS).

[87]  F.S. Foster,et al.  Optimizing the radiation pattern of sparse periodic two-dimensional arrays , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[88]  J. Seward,et al.  Three- and four-dimensional cardiovascular ultrasound imaging: a new era for echocardiography. , 1993, Mayo Clinic proceedings.

[89]  S.W. Smith,et al.  High-speed ultrasound volumetric imaging system. I. Transducer design and beam steering , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[90]  E. Lacaze,et al.  A l'intérieur d'une barrette échographique , 1998 .

[91]  Sverre Holm,et al.  Sparse and irregular sampling in array processing , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[92]  J. Jensen,et al.  Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[93]  A. Austeng,et al.  Sparse 2-D arrays for 3-D phased array imaging - experimental validation , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[94]  A. Dallai,et al.  ULA-OP: an advanced open platform for ultrasound research , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[95]  H. Liebgott,et al.  2D matrix array optimization by simulated annealing for 3D hepatic imaging , 2011, 2011 IEEE International Ultrasonics Symposium.

[96]  E R Pospisil,et al.  4-D x 3-D ultrasound: real-time scan conversion, filtering, and display of displacement vectors with a motorized curvilinear transducer , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[97]  M. Pappalardo,et al.  Element shape design of 2-D CMUT arrays for reducing grating lobes , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[98]  Travis N. Blalock,et al.  A portable, low-cost, highly integrated, 3D medical ultrasound system , 2003, IEEE Symposium on Ultrasonics, 2003.

[99]  D. Brandwood Fourier Transforms in Radar and Signal Processing , 2003 .

[100]  Travis N. Blalock,et al.  High element count two dimensional transducer array , 2003, IEEE Symposium on Ultrasonics, 2003.

[101]  Li Zhang,et al.  Orthogonal Genetic Algorithm for Planar Thinned Array Designs , 2012 .

[102]  Piero Tortoli,et al.  Non-grid based elements positioning for optimal 2D array beams , 2012, 2012 IEEE International Ultrasonics Symposium.

[103]  D. A. Seggie,et al.  Realistic Simulation of B-Scan Images , 1983 .

[104]  Vittorio Murino,et al.  Dynamic focusing by FFT beamforming for underwater 3D imaging , 1994 .

[105]  Boudewijn J Krenning,et al.  Assessment of left ventricular function by three-dimensional echocardiography , 2003, Cardiovascular ultrasound.

[106]  Robert D. Howe,et al.  Texture-based instrument segmentation in 3D ultrasound images , 2006, SPIE Medical Imaging.

[107]  S.W. Smith,et al.  High-speed ultrasound volumetric imaging system. II. Parallel processing and image display , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[108]  E.D. Light,et al.  Real-time 3-D ultrasound guidance of interventional devices , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[109]  Andrew H. Gee,et al.  Narrow-band volume rendering for freehand 3D ultrasound , 2002, Comput. Graph..

[110]  John A Hossack,et al.  Fabrication and evaluation of fully-sampled, two-dimensional transducer array for "Sonic Window" imaging system. , 2008, Ultrasonics.

[111]  O. Catoni Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules , 1992 .

[112]  Konstantinos N. Plataniotis,et al.  Parallelization and performance of 3D ultrasound imaging beamforming algorithms on modern clusters , 2002, ICS '02.

[113]  Stephen W. Smith,et al.  Real time volumetric ultrasound imaging system , 1990, Journal of Digital Imaging.

[114]  R. Mucci A comparison of efficient beamforming algorithms , 1984 .

[115]  Sverre Holm,et al.  Sparse arrays for real-time 3D imaging, simulated and experimental results , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[116]  Milen Nikolov,et al.  Sparse Array Optimization by Using the Simulated Annealing Algorithm , 2006, Numerical Methods and Applications.

[117]  Mustafa Karaman,et al.  Optimizing circular ring arrays for forward- looking IVUS imaging , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[118]  Jørgen Arendt Jensen,et al.  Investigation of the feasibility of 3D synthetic aperture imaging , 2003, IEEE Symposium on Ultrasonics, 2003.

[119]  K. Boone,et al.  Effect of skin impedance on image quality and variability in electrical impedance tomography: a model study , 1996, Medical and Biological Engineering and Computing.

[120]  Adam Huang,et al.  Characterization of 1st Generation High-Strain Elastomer MEMS Sensors for Morphing Aircraft Applications , 2007 .

[121]  G. Cincotti,et al.  Optimization of wide-band linear arrays , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[122]  Kirill V. Larin,et al.  Sequential Turning Acquisition and Reconstruction (STAR) method for four-dimensional imaging of cyclically moving structures , 2012, Biomedical optics express.

[123]  B.T. Khuri-Yakub,et al.  Phased subarray processing for underwater 3D acoustic imaging , 2002, OCEANS '02 MTS/IEEE.

[124]  David M. Drumheller,et al.  Sonar Signal Processing , 1999 .

[125]  Brian H. Maranda,et al.  Efficient digital beamforming in the frequency domain , 1989 .

[126]  Randy L. Haupt,et al.  Thinned arrays using genetic algorithms , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[127]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[128]  R. Canals,et al.  Volumetric ultrasound system for left ventricle motion imaging , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[129]  A. Basarab,et al.  P3H-2 Improved Beamforming for Lateral Oscillations in Elastography Using Synthetic Aperture Imaging , 2006, 2006 IEEE Ultrasonics Symposium.

[130]  G.R. Lockwood,et al.  Theoretical assessment of a crossed electrode 2-D array for 3-D imaging , 2003, IEEE Symposium on Ultrasonics, 2003.

[131]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[132]  V. Rich Personal communication , 1989, Nature.

[133]  Michael Hünerbein,et al.  Three-Dimensional Ultrasound in Soft Tissue Tumor Imaging , 2009 .

[134]  W. E Nagel 1988 International conference on supercomputing , 1988 .

[135]  J. Arendt Paper presented at the 10th Nordic-Baltic Conference on Biomedical Imaging: Field: A Program for Simulating Ultrasound Systems , 1996 .

[136]  Svetoslav Ivanov Nikolov,et al.  Real time 3D visualization of ultrasonic data using a standard PC. , 2003, Ultrasonics.

[137]  O. Basset,et al.  Nonlinear radio frequency image simulation for harmonic imaging: Creanuis , 2010, 2010 IEEE International Ultrasonics Symposium.

[138]  H. Liebgott Fourier domain beamforming for transverse-oscillations , 2010, 2010 IEEE International Ultrasonics Symposium.

[139]  Butrus T. Khuri-Yakub,et al.  Minimally Redundant 2-D Array Designs for 3-D Medical Ultrasound Imaging , 2009, IEEE Transactions on Medical Imaging.

[140]  Andrea Trucco,et al.  Devising an Affordable Sonar System for Underwater 3-D Vision , 2008, IEEE Transactions on Instrumentation and Measurement.