Inverse scattering problems with multi-frequencies

This paper is concerned with computational approaches and mathematical analysis for solving inverse scattering problems in the frequency domain. The problems arise in a diverse set of scientific areas with significant industrial, medical, and military applications. In addition to nonlinearity, there are two common difficulties associated with the inverse problems: ill-posedness and limited resolution (diffraction limit). Due to the diffraction limit, for a given frequency, only a low spatial frequency part of the desired parameter can be observed from measurements in the far field. The main idea developed here is that if the reconstruction is restricted to only the observable part, then the inversion will become stable. The challenging task is how to design stable numerical methods for solving these inverse scattering problems inspired by the diffraction limit. Recently, novel recursive linearization based algorithms have been presented in an attempt to answer the above question. These methods require multi-frequency scattering data and proceed via a continuation procedure with respect to the frequency from low to high. The objective of this paper is to give a brief review of these methods, their error estimates, and the related mathematical analysis. More attention is paid to the inverse medium and inverse source problems. Numerical experiments are included to illustrate the effectiveness of these methods.

[1]  William Rundell,et al.  A Recursive Algorithm for MultiFrequency Acoustic Inverse Source Problems , 2015, SIAM J. Numer. Anal..

[2]  R. Wang,et al.  Near-field microscopy and near-field optics: Daniel Courjon Imperial College Press, distributed by World Scientific Publishing Co. Pte. Ltd., ISBN 1-86094-258-X, 317 pages, price US $72 , 2005 .

[3]  W. Chew,et al.  Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. , 1990, IEEE transactions on medical imaging.

[4]  Rainer Kress,et al.  Newton’s method for inverse obstacle scattering meets the method of least squares , 2003 .

[5]  Anthony J. Devaney,et al.  Inverse Source Problem in Nonhomogeneous Background Media , 2007, SIAM J. Appl. Math..

[6]  G. Bao,et al.  Imaging of reflective surfaces by near-field optics. , 2012, Optics letters.

[7]  Gang Bao,et al.  Numerical solution of an inverse diffraction grating problem from phaseless data. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  A. Devaney,et al.  Time-reversal imaging with multiple signal classification considering multiple scattering between the targets , 2004 .

[9]  Gang Bao,et al.  Numerical Reconstruction of Electromagnetic Inclusions in Three Dimensions , 2014, SIAM J. Imaging Sci..

[10]  Junshan Lin,et al.  An inverse source problem with multiple frequency data , 2011 .

[11]  G. Bao,et al.  A computational inverse diffraction grating problem. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  F. Hettlich Frechet derivatives in inverse obstacle scattering , 1995 .

[13]  Thorsten Hohage,et al.  Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem , 2006, J. Comput. Phys..

[14]  Yu Chen Inverse scattering via skin effect , 1997 .

[15]  D Courjon,et al.  Near Field Microscopy and Near Field Optics , 2003 .

[16]  Karin Rothschild,et al.  Near Field Microscopy And Near Field Optics , 2016 .

[17]  Peter Monk,et al.  The linear sampling method for solving the electromagnetic inverse medium problem , 2002 .

[18]  Gang Bao,et al.  An Inverse Source Problem for Maxwell's Equations in Magnetoencephalography , 2002, SIAM J. Appl. Math..

[19]  Gang Bao,et al.  INVERSE MEDIUM SCATTERING PROBLEMS IN NEAR-FIELD OPTICS *1) , 2007 .

[20]  G. Bao,et al.  On the stability of an inverse problem for the wave equation , 2009 .

[21]  Mourad Sini,et al.  Inverse acoustic obstacle scattering problems using multifrequency measurements , 2012 .

[22]  F. Natterer,et al.  A propagation-backpropagation method for ultrasound tomography , 1995 .

[23]  J. Schotland,et al.  Three-dimensional total internal reflection microscopy. , 2001, Optics letters.

[24]  Roland Potthast,et al.  A new non-iterative singular sources method for the reconstruction of piecewise constant media. , 2004, Numerische Mathematik.

[25]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[26]  Junshan Lin,et al.  Numerical solution of the inverse source problem for the Helmholtz Equation with multiple frequency data , 2011 .

[27]  Habib Ammari,et al.  Stability estimates for an inverse scattering problem at high frequencies , 2012, 1205.6563.

[28]  Arthur B. Weglein,et al.  Inverse scattering series and seismic exploration , 2003 .

[29]  M. Burger Levenberg–Marquardt level set methods for inverse obstacle problems , 2004 .

[30]  G. Uhlmann,et al.  Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media , 1998 .

[31]  William Rundell,et al.  Inverse Obstacle Scattering Using Reduced Data , 1998, SIAM J. Appl. Math..

[32]  Gang Bao,et al.  Numerical solution of inverse scattering for near-field optics. , 2007, Optics letters.

[33]  Børge Arntsen,et al.  Data-driven inversion/depth imaging derived from approximations to one-dimensional inverse acoustic scattering , 2005 .

[34]  Fioralba Cakoni,et al.  Qualitative Methods in Inverse Scattering Theory: An Introduction , 2005 .

[35]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[36]  Takaaki Nara,et al.  An inverse source problem for Helmholtz's equation from the Cauchy data with a single wave number , 2011 .

[37]  William Rundell,et al.  A quasi-Newton method in inverse obstacle scattering , 1994 .

[38]  Frank Wübbeling,et al.  Marching schemes for inverse acoustic scattering problems , 2005, Numerische Mathematik.

[39]  Gang Bao,et al.  Numerical solution of an inverse medium scattering problem for Maxwell's Equations at fixed frequency , 2009, J. Comput. Phys..

[40]  Klaus Erhard,et al.  A Numerical Study of the Probe Method , 2006, SIAM J. Sci. Comput..

[41]  Masaru Ikehata,et al.  Reconstruction of an obstacle from the scattering amplitude at a fixed frequency , 1998 .

[42]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[43]  Peter Monk,et al.  The inverse source problem for Maxwell's equations , 2006 .

[44]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[45]  Habib Ammari,et al.  Super-resolution in high-contrast media , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  Habib Ammari,et al.  Analysis of the scattering map of a linearized inverse medium problem for electromagnetic waves , 2001 .

[47]  A. Devaney,et al.  Nonuniqueness in inverse source and scattering problems , 1982 .

[48]  A. Kirsch The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media , 2002 .

[49]  J. Schotland,et al.  Near-Field Tomography , 2022 .

[50]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[51]  Vladimir Rokhlin,et al.  On the Riccati equations for the scattering matrices in two dimensions , 1997 .

[52]  Alain Dereux,et al.  Near-field optics theories , 1996 .

[53]  J. Schotland,et al.  Determination of three-dimensional structure in photon scanning tunnelling microscopy , 2002 .

[54]  Victor Isakov,et al.  Inverse Source Problems , 1990 .

[55]  Plamen Stefanov,et al.  Boundary rigidity and stability for generic simple metrics , 2004, math/0408075.

[56]  Junshan Lin,et al.  A multi-frequency inverse source problem , 2010 .

[57]  O. Sejersted Nobel Prize for Chemistry , 1937, Nature.

[58]  Hongkai Zhao,et al.  Imaging of location and geometry for extended targets using the response matrix , 2004 .

[59]  E. Miller,et al.  A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets , 2000 .

[60]  Stéphane Crépey Calibration of the local volatility in a trinomial tree using Tikhonov regularization , 2003 .

[61]  Gang Bao,et al.  Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm , 2007, J. Comput. Phys..

[62]  G. Bao,et al.  Reconstruction of a defect in an open waveguide , 2013 .

[63]  Anthony J. Devaney,et al.  Inverse problem for random sources (A) , 1978 .

[64]  Margaret Cheney,et al.  The Linear Sampling Method and the MUSIC Algorithm , 2001 .

[65]  Maxim J. Goldberg,et al.  An improved operator expansion algorithm for direct and inverse scattering computations , 1999 .

[66]  Hongkai Zhao,et al.  A direct imaging method using far-field data* , 2007 .

[67]  Sailing He,et al.  Identification of dipole sources in a bounded domain for Maxwell's equations , 1998 .

[68]  P Scott Carney,et al.  Theory of total-internal-reflection tomography. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[69]  Takaaki Nara,et al.  Inverse dipole source problem for time-harmonic Maxwell equations: algebraic algorithm and Hölder stability , 2012 .

[70]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[71]  Jin Cheng,et al.  The numerical realization of the probe method for the inverse scattering problems from the near-field data , 2005 .

[72]  F. Santosa A Level-set Approach Inverse Problems Involving Obstacles , 1995 .

[73]  Yu Chen,et al.  Inverse scattering via Heisenberg's uncertainty principle , 1996 .

[74]  D. Colton,et al.  The linear sampling method in inverse electromagnetic scattering theory , 2003 .

[75]  Thorsten Hohage,et al.  New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications , 2001, SIAM J. Math. Anal..

[76]  Gang Bao,et al.  Inverse Medium Scattering Problems for Electromagnetic Waves , 2005, SIAM J. Appl. Math..

[77]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[78]  Hai E Zhang,et al.  Sensitivity analysis of an inverse problem for the wave equation with caustics , 2012, 1211.6220.

[79]  Masaru Ikehata,et al.  Reconstruction of obstacle from boundary measurements , 1999 .

[80]  Shui-Nee Chow,et al.  Numerical solution of an inverse medium scattering problem with a stochastic source , 2010 .

[81]  Thorsten Hohage,et al.  On the numerical solution of a three-dimensional inverse medium scattering problem , 2001 .

[82]  Jack K. Cohen,et al.  Nonuniqueness in the inverse source problem in acoustics and electromagnetics , 1975 .

[83]  John C. Schotland,et al.  Strong tip effects in near-field scanning optical tomography , 2007 .

[84]  Hongkai Zhao,et al.  A direct imaging algorithm for extended targets , 2006 .

[85]  Nicolas Valdivia,et al.  Acoustic source identification using multiple frequency information , 2009 .

[86]  Gang Bao,et al.  ERROR ESTIMATES FOR THE RECURSIVE LINEARIZATION OF INVERSE MEDIUM PROBLEMS , 2010 .

[87]  Gang Bao,et al.  Inverse medium scattering for three-dimensional time harmonic Maxwell equations , 2004 .

[88]  Peijun Li,et al.  An inverse random source scattering problem in inhomogeneous media , 2011 .

[89]  A. S. Fokas,et al.  The unique determination of neuronal currents in the brain via magnetoencephalography , 2004 .

[90]  A. Kirsch,et al.  Antenna control and optimization , 1991 .

[91]  G. Bao,et al.  Imaging of Local Surface Displacement on an Infinite Ground Plane: The Multiple Frequency Case , 2011, SIAM J. Appl. Math..

[92]  N I Grinberg,et al.  The Factorization Method for Inverse Problems , 2007 .

[93]  Gang Bao,et al.  Numerical Solution of Inverse Scattering Problems with Multi-experimental Limited Aperture Data , 2003, SIAM J. Sci. Comput..

[94]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[95]  Karl-Heinz Hauer,et al.  On uniqueness and non-uniqueness for current reconstruction from magnetic fields , 2005 .

[96]  John C. Schotland,et al.  Inverse scattering for near-field microscopy , 1999 .

[97]  Gang Bao,et al.  An inverse random source problem for the Helmholtz equation , 2013, Math. Comput..

[98]  Peter Monk,et al.  Recent Developments in Inverse Acoustic Scattering Theory , 2000, SIAM Rev..

[99]  Alan J. Heeger,et al.  The Nobel Prize in Chemistry , 2015 .

[100]  G. Bao,et al.  Inverse medium scattering for the Helmholtz equation at fixed frequency , 2005 .

[101]  Matthias Vögeler,et al.  Reconstruction of the three-dimensional refractive index in electromagnetic scattering by using a propagation-backpropagation method , 2003 .

[102]  Gang Bao,et al.  Regularity and Stability for the Scattering Map of a Linearized Inverse Medium Problem , 2000 .